4
6
616-6618
.
[
[
[
[
4] E. Martínez-González, F. J. González, J. R. Ascenso, P. M. Marcos, C.
Frontana, J. Org. Chem., 2016, 81, 6329-6335.
5] A. Rauf, S. Rauf, M. Mohammad, Electrochim. Acta., 2018, 284, 696-
Scheme 5. Proposed reaction mechanism
7
08.
6] C. Chan-Leonor, S. L. Martin, D. K. Smith, J. Org. Chem., 2005, 70,
0817-10822.
N
1
H2N
7] M. J. Climent, A. Corma, J. C. Hernández, A. B. Hungría, S. Iborra, S.
O
Martínez-Silvestre, J. Catal., 2012, 292, 118-129.
DNB
DNB
N
2
a
NH2
NH
H
N
[8] (a) J. Guillon, P. Grellier, M. Labaied, P. Sonnet, J. -M. Leger, R. D.
Poulain, I. F. Bares, P. K. Dallemagne, N. Lemaitre, F. Pehourcq, J.
Rochette, C. Sergheraert, C. Jarry, J. Med. Chem., 2004, 47,1997-2009;
SET
A
B
1a
NH3
H2O
C
(b) J. Guillon, E. Mouray, S. Moreau, C. Mullie, I. Forfar, V. Desplat, S.
Belisle-Fabre, N. Pinaud, F. Ravanello, A. Le- Naour, J. -M. Leger, G.
Gosmann, C. Jarry, G. Deleris, P. Sonnet, P Grellier, Eur. J. Med. Chem.,
N
N
O
NH
N
2
011, 46, 2310-2326.
[9] J. Guillon, P. Dallemagne, B. Pfeiffer, P. Renard, D. Manechez, A.
Kervran, S. Rault, Eur. J. Med. Chem., 1998, 33, 293-308.
D
3aa
[
10] a) S. Butini, R. Budriesi, M. Hamon, E. Morelli, S. Gemma, M. Brindisi,
G. Borrelli, E. Novellino, I. Fiorini, P. Ioan, A. Chiarini, A. Cagnotto, T.
Mennini, C. Fracasso, S. Caccia, G. Campiani, J. Med. Chem., 2009, 52,
6946-6950. (b) E. Morelli, S. Gemma, R. Budriesi, G. Campiani, E.
Novellino, C. Fattorusso, B. Catalanotti, S. S. Coccone, S. Ros, G.
Borrelli, V. Kumar, M. Persico, I. Fiorini, V. Nacci, P. Ioan, A. Chiarini,
M. Hamon, A. Cagnotto, T. Mennini, C. Fracasso, M. Colovic, S. Caccia,
J. Butini Med. Chem., 2009, 52, 3548-3562.
1
,2-DNB oxidised C-N bond of benzyl amine in situ to
generate aldehyde. Thus, based on our previously reported work
and on the basis of control experiments a plausible mechanism is
depicted in (Scheme 5). Owing to electron deficient character
,2-DNB acts as an acceptor24 and form radical anion while
25
1
benzyl amine acts as donor and form radical cation during single
electron transfer (SET) mechanism.26 Strong hydrogen bonding
tendency of 1,2-DNB converts benzyl amine (1a) into iminium
ion that further undergoes oxidation to generate radical cation [A]
which eventually gets converted into benzaldehyde B under
aerobic condition. The dehydrative condensation of 1-(2-
aminophenyl) pyrrole (2a) and benzaldehyde B leads to
formation of imine [C]15 which follows intramolecular C-C bond
formation by 6-endo-dig attack on C-2 position of the N-
heteroarene to form [D]. Finally oxidative aromatization of [D]
gives the desired product 3aa.
[
[
[
[
[
11] V. Desplat, A. Geneste, M. -A. Begorre, S. B. Fabre, S. Brajot, S.
Massip, D. Thiolat, D. Mossalayi, C. Jarry, J. Guillon J. Enzyme Inhib.
Med. Chem., 2008, 23, 648-658.
12] J. Guillon, I. Forfar, M. Mamani-Matsuda, V. Desplat, M. Saliège, D.
Thiolat, S. Massip, A. Tabourier, J. M. Léger, B. Dufaure, G. Haumont,
C. Jarry, D. Mossalayi, Bioorganic Med. Chem., 2007, 15, 194-210.
13] F. Aiello, G. Carullo, F. Giordano, E. Spina, A. Nigro, A. Garofalo, S.
Tassini, G. Costantino, P. Vincetti, A. Bruno, M. Radi, Chem. Med.
Chem., 2017, 12, 1279-1285.
14] G. S. Mani, A. V. S. Rao, Y. Tangella, S. Sunkari, F. Sultana, H. K.
Namballa, N. Shankaraiah, A. Kamal, New J. Chem., 2018, 42, 15820-
1
5829.
15] (a) A. K. Verma, R. R. Jha, V. K. Sankar, T. Aggarwal, R. P. Singh, R.
Chandra, Eur. J. Org. Chem., 2011, 34, 6998-7010. b) A. Preetam, M.
Nath RSC. Adv. 2015, 5, 21843-21853. c) C. Wang, Y. Li, J. Zhao, B.
Cheng, H. Wang, H. Zhai, Tetrahedron Lett., 2016, 57, 3908-3911.
16] J. J. Lade, B. N. Patil, M. V. Vhatkar, K. S. Vadagaonkar, A. C. Chaskar,
Asian J. Org. Chem., 2017, 6, 1579-1583.
Conclusion
We have developed a simple, efficient and one-pot practical
approach to synthesize of pyrrolo[1,2-a]quinoxalines (3aa). Best
of our knowledge 1,2-DNB is used for the first time for
transformation of arylamines (1) and arylalchols (3) into
corresponding aldehydes (B). This protocol could also be used
for gram-scale synthesis. Further, we strongly believe that this
protocol will serve as advancement to the existing methods and
will be widely used for the synthesis of biologically important N-
heteroarene.
[
[
[
[
[
17] C. Xie, L. Feng, W. Li, X. Ma, X. Ma, Y. Liu, C. Ma, Org. Biomol.
Chem., 2016, 14, 8529-8535.
18] H. Liu, F. Zhou, W. Luo, Y. Chen, C. Zhang, C. Ma, Org. Biomol.
Chem., 2017, 15, 7157-7264.
19] Z. An, L. Zhao, M. Wu, J. Ni, Z. Qi, G. Yu, R. Yan, Chem. Commun.,
2
017, 53, 11572-11575.
20] a) C. Wang, Y. Li, R. Guo, J. Tian, C. Tao, B. Cheng, H. Wang, J.
Zhang, H. Zhai, Asian J. Org. Chem., 2015, 4, 866-869; b) M.
Ramamohan, R. Sridhar, K. Raghavendrarao, N. Paradesi, K. B.
Chandrasekhar, S. Jayaprakash, Synlett,2015, 26, 1096-1100.
Acknowledgments
S.D.P. thanks Council of Scientific & Industrial Research,
New Delhi, India for providing a CSIR-SRF fellowship. B.N.P.
thanks UGC for providing SRF fellowship. A.C.C. thanks
[21] Z. Zhang, J. Li, G. Zhang, N. Ma, Q. Liu, T. Liu, J. Org. Chem., 2015,
8
0, 6875-6884.
[22] R. Rubio-Presa, M. R. Pedrosa, M. A. Fernandez-Rodríguez, F. J.
Defence
Research
and
Development
Organization
Arnaiz, R. Sanz, Org. Lett., 2017, 19, 5470-5473.
(
ERIP/ER/1503212/M/01/1666), New Delhi, India for financial
[23] (a) J. J. Lade, B. N. Patil, P. A. Sathe, K. S. Vadagaonkar, P. Chetti, A.
C. Chaskar, ChemistrySelect, 2017, 2, 6811-6817; (b) J. J. Lade, B. N.
Patil, K. S. Vadagaonkar, A. C. Chaskar, Tet. Lett., 2017, 58, 2103-2108;
support. Authors thank Director, National Centre for
Nanosciences and Nanotechnology, University of Mumbai for his
generous support. Authors gratefully acknowledge Department of
Chemistry, University of Mumbai for their generous help and
support.
(c) S. D. Pardeshi, P. A. Sathe, K. S. Vadagaonkar, A. C. Chaskar, Adv.
Synth. Catal., 2017, 359, 4217-4226; (d) S. D. Pardeshi, K.
S
Vadagaonkar, J. J. Lade, L. Melone, A. C. Chaskar, ChemistrySelect,
2017, 2, 5409-5413; (e) S. D. Pardeshi, P. A. Sathe, B. V. Pawar, K. S.
Vadagaonkar, A. C. Chaskar, Eur. J. Org. Chem., 2018, 2018, 2098-
Appendix A. Supplementary data
2
102; (f) S. D. Pardeshi, P. A. Sathe, K. S. Vadagaonkar, L. Melone, A.
C. Chaskar, Synth., 2018, 50, 361-370; (g) P. A. Sathe, K. S.
Vadagaonkar, M. V. Vhatkar, L. Melone, A. C. Chaskar,
ChemistrySelect, 2018, 3, 277-283; (h) B. N. Patil, J. J. Lade, A. S.
Karpe, B. Pownthurai, K. S. Vadagaonkar, V. Mohanasrinivasan, A. C.
Chaskar, Tet. Lett., 2019, 60, 891-894.
Supplementary data to this article can be found online at
References and notes
[
[
[
24] R.-J. Tang, Q. He, L. Yang, Chem. Comm., 2015, 51, 5925–5928.
25] A. Kumar, B. A. Shah, Org. Lett., 2015, 17, 5232–5235.
26] N. Zhang, S. R. Samanta, B. M. Rosen, V. Percec, Chem. Rev., 2014,
[
[
1] A. Noble, J. C. Anderson, Chem. Rev., 2013, 113, 2887-2939.
2] E. Chong, B. Qu, Y. Zhang, Z. P. Cannone, J. C. Leung, S. Tcyrulnikov,
K. D. Nguyen, N. Haddad, S. Biswas, X. Hou, K. Kaczanowska, M.
Chwalba, A. Tracz, S. Czarnocki, J. J. Song, M. C. Kozlowski, C. H.
Senanayakea, Chem. Sci., 2019, 10, 4339-4345.
1
14, 5848–5958.
[27] General experimental procedure:
[3] B. S. Tovrog, F. Mares, S. E. Diamond, J. Am. Chem. Soc., 1980, 21,