Journal of the American Chemical Society
COMMUNICATION
Scheme 6. Total Synthesis of (()-Trigonoliimine C (4)
(5) Similar oxidative arylꢀaryl couplings to generate oxidatively
labile C2-indole dimers are proposed in the biosynthesis of staurospor-
ine: (a) Howard-Jones, A. R.; Walsh, C. T. J. Am. Chem. Soc. 2007,
129, 11016–11017. (b) Makino, M.; Sugimoto, H.; Shiro, Y.; Asamizu,
S.; Onaka, H.; Nagano, S. Proc. Natl. Acad. Sci. U.S.A. 2007, 104,
11591–11596. (c) Nakano, H.; Omura, S. J. Antibiot. 2009, 62, 17–26.
(6) (a) Witkop, B.; Patrick, J. B. J. Am. Chem. Soc. 1951, 73, 713–718. (b)
Witkop, B.; Patrick, J. B. J. Am. Chem. Soc. 1951, 73, 2188–2195. (c) Evans,
F. J.; Lyle, G. G.; Watkins, J.; Lyle, R. E. J. Org. Chem. 1962, 27, 1553–1557.
(d) Finch, N.; Taylor, W. I. J. Am. Chem. Soc. 1962, 84, 3871–3877. (e)
Zhang, X.; Foote, C. S. J. Am. Chem. Soc. 1993, 115, 8867–8868. (f) Liu, Y.;
McWhorter, W. W., Jr. J. Org. Chem. 2003, 68, 2618–2622.
(7) For some seminal examples of oxidation/WagnerꢀMeerwein
[1,2]-shift in oxindole synthesis, see: (a) Ito, M.; Clark, C. W.;
Mortimore, M.; Goh, J. B.; Martin, S. F. J. Am. Chem. Soc. 2001,
123, 8003–8010. (b) Liu, Y.; McWhorter, W. W., Jr. J. Am. Chem. Soc.
2003, 125, 4240–4252. (c) Baran, P. S.; Richter, J. M. J. Am. Chem. Soc.
2005, 127, 15394–15396. (d) Poriel, C.; Lachia, M.; Wilson, C.; Davies,
J. R.; Moody, C. J. J. Org. Chem. 2007, 72, 2978–2987. (e) Lindel, T.;
Br€auchle, L.; Golz, G.; B€ohrer, P. Org. Lett. 2007, 9, 283–286. (f)
Pettersson, M.; Knueppel, D.; Martin, S. F. Org. Lett. 2007, 9,
4623–4626. (g) Grubbs, A. W.; Artman, G. D., III; Tsukamoto, S.;
Williams, R. M. Angew. Chem., Int. Ed. 2007, 46, 2257–2261. (h) Miller,
K. A.; Tsukamoto, S.; Williams, R. M. Nature Chem. 2009, 1, 63–68.
(8) Most examples of indoxyl synthesis via oxidation/Wagnerꢀ
Meerwein [1,2]-shift generate spiro-indoxyls: (a) Hutchison, A. J.; Kishi,
Y. J. Am. Chem. Soc. 1979, 101, 6786–6788. (b) Baran, P. S.; Corey, E. J. J.
Am. Chem. Soc. 2002, 124, 7904–7905. (c) Williams, R. M.; Cox, R. J.
Acc. Chem. Res. 2003, 36, 127–139.
In conclusion, we have developed the first convergent total
synthesis of the alkaloid (()-trigonoliimine C in 10 steps from
tryptamine and 6-methoxytryptamine. Our strategy relies on a
selective mono-oxidation of 2,20-bis-tryptamine 7, followed by a
WagnerꢀMeerwein [1,2]-shift to indoxyl 5. We have discovered
methods to oxidize either the electron-poor or electron-rich
indole system in an unsymmetrical conjugated binary indole,
which may have a broader impact for the construction of other
structurally complex indole alkaloids. The application of this
strategy to the other trigonoliimines, the synthesis of unnatural
analogs, and the exploration of biological activity for these
alkaloids are ongoing interests in our group.
’ ASSOCIATED CONTENT
S
Supporting Information. Complete experimental proce-
b
(9) (a) Bergman, J.; Koch, E.; Pelcman, B. Tetrahedron Lett. 1995,
36, 3945–3948. (b) Gilbert, E. J.; Ziller, J. W.; Van Vranken, D. L.
Tetrahedron 1997, 53, 16553–16564.
dures and characterization data. This material is available free of
(10) Davis, F. A.; Nadir, U. K.; Kluger, E. W. J. Chem. Soc., Chem.
Commun. 1977, 25–26.
’ AUTHOR INFORMATION
(11) Movassaghi recently reported an elegant use of Sc(OTf)3 to
convert a bis-indole into oxindole: Movassaghi, M.; Schmidt, M. A.;
Ashenhurst, J. A. Org. Lett. 2008, 10, 4009–4012.
(12) The structures of isomers 6 and 17 were confirmed by X-ray
crystallography. See Supporting Information.
Corresponding Author
(13) When we subjected bis-phthalyl protected unsymmetrical 6-MeO
2,20-bis-tryptamine to the optimized oxidation conditions (Table 1,
entry 9), the electron-rich indole ring was still oxidized preferentially
(albeit in a diminished ratio of 4:1). This suggests that both the methoxy
substituent and the formamide influence the high selectivity during
mono-oxidation of 7. See Supporting Information for details.
(14) See Supporting Information for details of our attempts to use
chiral iodine(III) reagents in the enantioselective mono-oxidation of bis-
tryptamine 7. While enantioselective iodine(III) mediated additions of
intramolecular nucleophiles have been reported, difficulties associated
with enantioselective iodine(III)-mediated additions of intermolecular
nucleophiles such as water persist: Quideau, S.; Lyvinec, G.; Marguerit,
M.; Bathany, K.; Ozanne-Beaudenon, A.; Buffeteau, T.; Cavagnat, D.;
Chꢀenedꢀe, A. Angew. Chem., Int. Ed. 2009, 48, 4605–4609.
’ ACKNOWLEDGMENT
Financial support was provided by the Robert A. Welch
Foundation (Grant I-1748) and the W. W. Caruth, Jr. Endowed
Scholarship. Prasanta Das is acknowledged for experimental
assistance.
’ REFERENCES
(1) (a) Kam, T. S.; Choo, Y. M. In The Alkaloids; Cordell, G. A., Ed.;
Academic Press: San Diego, 2006; Vol. 63, pp 181ꢀ337. (b) May, J. A.;
Stoltz, B. Tetrahedron 2006, 62, 5262–5271. (c) Steven, A.; Overman,
L. E. Angew. Chem., Int. Ed. 2007, 46, 5488–5508. (d) Kim, J.;
Movassaghi, M. Chem. Soc. Rev. 2009, 38, 3035–3050.
(15) Recently, a highly chemoselective and enantioselective method
for oxidizing indoles with peptide catalysts was reported: Kolundzic, F.;
Noshi, M. N.; Tjandra, M.; Movassaghi, M.; Miller, S. J. J. Am. Chem. Soc.
2011, 133, 9104–9111.
(16) The assigned structures of 5, 19, and 20 were supported by
detailed NMR analysis. See Supporting Information for details.
(17) The selective conversion of dihydrofuran 21 into indoxyl 19
may be due to the resonance-stabilized electron donation of the methoxy
group, which dictates the fragmentation depicted in Scheme 5.
(18) For discussions of hydride generation from formic acid, see: (a)
Trost, B. M.; Li, Y. J. Am. Chem. Soc. 1996, 118, 6625–6633. (b) Tsuji, J.;
Mandai, T. Synthesis 1996, 1–24.
(2) (a) Nakagawa, M.; Kato, S.; Kataoka, S.; Hino, T. J. Am. Chem.
Soc. 1979, 101, 3136–3137. (b) Nakagawa, M.; Taniguchi, M.; Sodeoka,
M.; Ito, M.; Yamaguchi, K.; Hino, T. J. Am. Chem. Soc. 1983,
105, 3709–3710. (c) Baran, P. S.; Guerrero, C. A.; Corey, E. J. J. Am.
Chem. Soc. 2003, 125, 5628–5629. (d) Hewitt, P. R.; Cleator, E.; Ley,
S. V. Org. Biomol. Chem. 2004, 2, 2415–2417. (e) Movassaghi, M.;
Schmidt, M. A. Angew. Chem., Int. Ed. 2007, 46, 3725–3728. (f) Kim, J.;
Ashenhurst, J. A.; Movassaghi, M. Science 2009, 324, 238–241. (g)
Nicolaou, K. C.; Dalby, S. M.; Li, S.; Suzuki, T.; Chen, D. Y.-K. Angew.
Chem., Int. Ed. 2009, 48, 7616–7620. (h) Newhouse, T.; Lewis, C. A.;
Eastman, K. J.; Baran, P. S. J. Am. Chem. Soc. 2010, 132, 7119–7137.
(3) Tan, C.-J.; Di, Y.-T.; Wang, Y.-H.; Zhang, Y.; Si, Y.-K.; Zhang, Q.;
Gao, S.; Hu, X.-J.; Fang, X.; Li, S.-F.; Hao, X.-J. Org. Lett. 2010,
12, 2370–2373.
(19) Smallwood, I. M. Solvent Recovery Handbook, 2nd ed.; Blackwell
Science: Oxford, 2002; pp 404ꢀ406.
(4) See Supporting Information of the isolation paper (ref 3).
10053
dx.doi.org/10.1021/ja203960b |J. Am. Chem. Soc. 2011, 133, 10050–10053