92
G. Walther et al. / Journal of Catalysis 260 (2008) 86–92
◦
the change in particle size may be related to 40 C more in heat
applied than for the catalytic reactions driven on Catalyst B.
Catalyst A was not heated more than the pretreatment required.
This means that the sintering on this catalyst is related only to
how the reactions proceeded. Across the general observations pub-
lished regarding CO oxidation on TiO2 supported gold using O2 as
an oxidizing agent, sintering of nanoparticulate gold has not been
reported. Gold nanoparticles have also been found to be a stable
catalyst in the presence of H2 and H2O [50]. This suggests that the
sintering observed on Catalyst A is related to the supply of N2O.
In contrast, the particles of Catalyst C did not significantly sinter,
[4] G.C. Bond, D.T. Thompson, Catal. Rev. Sci. Eng. 41 (1999) 319–388.
[5] G.C. Bond, C. Louis, D.T. Thompson, Catalysis by Gold, first ed., Imperial College
Press, London, 2006.
[6] B. Hvolbæk, T.V.W. Janssens, B.S. Clausen, H. Falsig, C.H. Christensen, J.K.
Nørskov, Nano Today 2 (2007) 14–18.
[7] D.E. Starr, S.K. Shaikhutdinov, H.-J. Freund, Top. Catal. 36 (2005) 33–41.
[8] H.-J. Freund, Catal. Today 117 (2006) 6–17.
[9] M. Valden, X. Lai, D.W. Goodman, Science 281 (1998) 1647–1649.
[10] M.S. Chen, D.W. Goodman, Science 306 (2004) 252–255.
[11] T.V.W. Janssens, A. Carlsson, A. Puig-Molina, B.S. Clausen, J. Catal. 240 (2006)
108–113.
[12] C. Xu, J. Su, X. Xu, P. Liu, H. Zhao, F. Tian, Y. Ding, J. Am. Chem. Soc. 129 (2007)
42–43.
◦
[13] C. Xu, X. Xu, J. Su, Y. Ding, J. Catal. 252 (2007) 243–248.
[14] R.J.H. Grisel, B.E. Nieuwenhuys, Catal. Today 64 (2001) 69–81.
[15] M. Mavrikakis, P. Stoltze, J.K. Nørskov, Catal. Lett. 64 (2000) 101–106.
[16] Z.-P. Liu, P. Hu, A. Alavi, J. Am. Chem. Soc. 124 (2002) 14770–14779.
[17] N. Lopez, J.K. Nørskov, J. Am. Chem. Soc. 124 (2002) 11262–11263.
[18] N. Lopez, T.V.W. Janssens, B.S. Clausen, Y. Xu, M. Mavrikakis, T. Bligaard, J.K.
Nørskov, J. Catal. 223 (2004) 232–235.
[19] T.V.W. Janssens, B.S. Clausen, B. Hvolbæk, H. Falsig, C.H. Christensen, T. Bligaard,
J.K. Nørskov, Top. Catal. 44 (2007) 15–26.
[20] B.E. Solsona, T. Garcia, C. Jones, S.H. Taylor, A.F. Carley, G.J. Hutchings, Appl.
Catal. A Gen. 312 (2006) 67–76.
even though the maximum temperature was 80 C higher than the
temperature of the pretreatment.
5. Conclusions
We have investigated two different reactions on three TiO2 sup-
ported gold catalysts with two different oxidizing agents. Experi-
mental results for CO oxidation on Catalysts A and B agree with
both our theoretical model and the literature, following the d
trend advocated by Nørskov et al. [6]. However, for Catalyst C we
found more bulk-like behavior.
−3
[21] D.T. Thompson, Top. Catal. 38 (2006) 231–240.
[22] R.D. Waters, J.J. Weimer, J.E. Smith, Catal. Lett. 30 (1994) 181–188.
[23] S. Ivanova, C. Petit, V. Pitchon, Appl. Catal. A Gen. 267 (2004) 191–201.
[24] S. Ivanova, C. Petit, V. Pitchon, Gold Bull. 39 (2006) 3–8.
[25] C.H. Christensen, B. Jorgensen, J. Rass-Hansen, K. Egeblad, R. Madsen, S.K. Klit-
gaard, S.M. Hansen, M.R. Hansen, H.C. Andersen, A. Riisager, Angew. Chem. 45
(2006) 4648–4651.
[26] M.-C. Daniel, D. Astruc, Chem. Rev. 104 (2004) 293–346.
[27] G. Walther, G. Jones, S. Jensen, U.J. Quaade, S. Horch, Catal. Today, in press.
[28] M. Haruta, Catal. Today 36 (1997) 153–166.
[29] J.A. van Bokhoven, C. Louis, J.T. Miller, M. Tromp, O.V. Safonova, P. Glatzel,
Angew. Chem. Ger. Ed. 118 (2006) 4767–4770.
[30] H. Falsig, B. Hvolbæk, I.S. Kristensen, T. Jiang, T. Bligaard, C.H. Christensen, J.K.
Nørskov, Angew. Chem. 47 (2008) 4835–4839.
[31] A.C. Gluhoi, M.A.P. Dekkers, B.E. Nieuwenhuys, J. Catal. 219 (2003) 197–205.
[32] L.M. Molina, B. Hammer, Phys. Rev. B 69 (2004) 155424.
[33] U.J. Quaade, S. Jensen, O. Hansen, J. Appl. Phys. 97 (2005) 44906.
[36] D.R. Lide, Handbook of Chemistry and Physics, 87th ed., CRC Press, Boca Raton,
2006–2007.
Based on our theoretical model, we find oxidizing CO by N2O
involves a CO–O transition state, with atomic O adsorbed on the
gold B5 sites and CO on the corners. On the other hand, CO ox-
idation by molecular O2 occurs via a different reaction pathway,
which instead involves a meta-stable intermediate CO–O2. In this
case, O2 is strongly adsorbed on gold corner sites while CO is ad-
sorbed on the nearby edge sites (cf. Fig. 2).
However, although the two oxidizing agents used proceeded via
different reaction pathways on different active sites, the apparent
overall activation barriers obtained from both theory and experi-
ment were found to be the same. From experiment, we found that
H2 and CO oxidation proceed similarly, with common activation
barriers and rate enhancements when comparing oxidizing agents.
Additionally, from our TEM analysis we conclude that N2O ox-
idation may promote sintering of Au nanoparticles on TiO2, since
significant sintering has not been found for CO and H2 oxidation
on gold nanoparticles using O2 [27,50].
[38] D. Vanderbilt, Phys. Rev. B 41 (1990) 7892–7895.
[39] B. Hammer, L.B. Hansen, J.K. Nørskov, Phys. Rev. B 59 (1999) 7413–7421.
[40] J.K. Nørskov, J. Rossmeisl, A. Logadottir, L. Lindqvist, J.R. Kitchin, T. Bligaard, H.
Jonsson, J. Phys. Chem. B 108 (2004) 17886–17892.
Acknowledgments
[41] S. Kurth, J.P. Perdew, P. Blaha, Int. J. Quant. Chem. 75 (1999) 889–909.
[42] J.H. Noggle, Physical Chemistry, third ed., Harper Collins, New York, 1996.
[43] B.E. Nieuwenhuys, A.C. Gluhoi, E.D.L. Rienks, C.J. Weststrate, C.P. Vinod, Catal.
Today 100 (2005) 49–54.
[44] M. Boudart, G. Djéga-Mariadassou, Kinetics of Heterogeneous Catalytic Reac-
tions, Princeton University Press, Princeton, NJ, 1984.
[45] J.K. Nørskov, T. Bligaard, A. Logadottir, S. Bahn, L.B. Hansen, M. Bollinger, H.
Bengaard, B. Hammer, Z. Sljivancanin, M. Mavrikakis, Y. Xu, S. Dahl, C.J.H. Ja-
cobsen, J. Catal. 209 (2002) 275–278.
[46] L.M. Molina, B. Hammer, Appl. Catal. A Gen. 291 (2005) 21–31.
[47] P. Buffat, J.P. Borel, Phys. Rev. A 13 (1976) 2287–2298.
[48] H. Sykes, E. Charles, F.J. Williams, M.S. Tikhov, R.M. Lambert, J. Phys. Chem.
B 106 (2002) 5390–5394.
The authors gratefully acknowledge support in the form of cat-
alysts provided by Project AuTEK. We also thank F.B. Grumsen
for assistance with taking TEM images, and T. Bligaard for useful
discussions. G. Walther and D.J. Mowbray also acknowledge finan-
cial support from NABIIT. The Center for Atomic-scale Materials
Design is funded by the Lundbeck Foundation. The authors also
acknowledge support from the Danish Center for Scientific Com-
puting through grant HDW-1103-06.
References
[49] P.M. Ajayan, D.L. Marks, Phys. Rev. Lett. 60 (1988) 585–587.
[50] P. Landon, J. Ferguson, B.E. Solsona, T. Garcia, S. Al-Sayari, A.F. Carley, A.A. Herz-
ing, C.J. Kiely, M. Makkee, J.A. Moulijn, A. Overweg, S.E. Golunski, G.J. Hutch-
ings, J. Mater. Chem. 16 (2006) 199–208.
[1] B. Hammer, J.K. Nørskov, Nature 376 (1995) 238–240.
[2] M. Haruta, T. Kobayashi, H. Sano, N. Yamada, Chem. Lett. (1987) 405–408.
[3] A.S.K. Hashmi, G.J. Hutchings, Angew. Chem. 45 (2006) 7896.