Paper
RSC Advances
outperformed 7b and two other commercial IM-based inhibi- 15 S. Hernandez, J. Bruzual, F. Lopez-Linares and J. Luzon,
tors. The greater reduction of icorr values in the anodic branch of
Tafel plots and the shi of the Ecorr values in the anodic direc-
tion established that the IMs acted mainly as anodic inhibitors.
Isolation of potential corrosion inhibiting compounds in crude
oils, Proceedings of Corrosion/2003, NACE International,
Houston, Taxes, paper no. 330, 2003.
The magnitude of DGꢀads values is indicative of chemisorption of 16 X. Liu, S. Chen, H. Ma, G. Liu and L. Shen, Appl. Surf. Sci.,
the electron-rich amidine motifs by donation of electrons to the
vacant d-orbitals in Fe on the anodic sites. The XPS results 17 P. A. Koutentis, M. Koyioni and S. S. Michaelidou, Molecules,
conrmed the formation of a protective IM lm on the metal 2011, 16, 8992–9002.
surface. The adsorption of the IMs was found to t the Lang- 18 C.-H. Yu, C.-H. Huang and C.-S. Tan, Aerosol Air Qual. Res.,
muir adsorption isotherm. The IMs are surface active molecules 2012, 12, 745–769.
as they lower the surface tension; the surface coverage data and 19 P. N. Sutar, A. Jha, P. D. Vaidya and E. Y. Kenig, Chem. Eng. J.,
CMC values demonstrated that the inhibitor molecules prefers 2012, 207, 718–724.
to undergo adsorption on to the metal surface rather than to 20 M. A. J. Mazumder, H. A. Al-Muallem and S. A. Ali, Corros.
micellize. Sci., 2015, 90, 54–68.
A better surface coverage provided by the twin-tailed IMs 21 W. Qiao, Z. Zheng and Q. Shi, J. Surfactants Deterg., 2012, 15,
than their single- and triple-tailed counterparts is a signicant 533–539.
nding that would indeed be helpful in designing better twin- 22 D. J. Heldebrant, P. G. Jessop, C. A. Thomas, C. A. Eckert and
2006, 253, 814–820.
tailed IMs having tails longer than the current octyloxy group.
C. L. Liotta, J. Org. Chem., 2005, 70, 5335–5338.
23 V. Jovancicevic and S. Ramachandran, Corrosion, 1999, 55,
631.
24 J. Cruz, L. M. R. Martınez-Aguilera, R. Salcedo and M. Castro,
Int. J. Quantum Chem., 2001, 85, 546–556.
Acknowledgements
Facilities provided by King Fahd University of Petroleum and
Minerals and nancial assistance by King Abdulaziz City of 25 F. Farelas and A. Ramirez, Int. J. Electrochem. Sci., 2010, 5,
Science and Technology (KACST) (under the Grant: AR-26-26)
are gratefully acknowledged.
797–814.
26 P. C. Okafor, X. Liu and Y. G. Zheng, Corros. Sci., 2009, 51,
761–768.
27 B. Wang, M. Du, J. Zhang and C. J. Gao, Corros. Sci., 2011, 53,
353–361.
References
ˇ
1 M. Finsgar and J. Jackson, Corros. Sci., 2014, 86, 17–41.
28 J. Zhang, G. Qiao, S. Hu, Y. Yan, Z. Ren and L. Yu, Corros. Sci.,
2011, 53, 147–152.
2 W. Villamizar, M. Casales, J. G. Gonzalez-Rodriguez and
L. Martinez, J. Solid State Electrochem., 2007, 11, 619–629.
29 M. Heydari and M. Javidi, Corros. Sci., 2012, 61, 148–155.
3 A. H. Mustafa, B. Ari-Wahjoedi and M. C. Ismail, J. Mater. 30 S.-H. Yoo, Y.-W. Kim, K. Chung, S.-Y. Baik and J.-S. Kim,
Eng. Perform., 2013, 22, 1748–1755. Corros. Sci., 2012, 59, 42–54.
4 M. B. Kermani and A. Morshed, Corrosion, 2003, 59, 659–683. 31 P. C. Okafor, C. B. Liu, Y. J. Zhu and Y. G. Zheng, Ind. Eng.
5 W. Durnie, R. De Marco, A. Jefferson and B. Kinsella, J.
Electrochem. Soc., 1999, 146, 1751–1756.
6 S. Ramachandran and V. Jovancicevic, Corrosion, 1999, 55,
259–267.
7 K. Chokshi, W. Sun and S. Nesic, Iron carbonate scale growth
and the effect of inhibition in CO2 corrosion of mild steel, NACE
Chem. Res., 2011, 50, 7273–7281.
32 M. W. S. Jawich, G. A. Oweimreen and S. A. Ali, Corros. Sci.,
2012, 65, 104–112.
33 S. A. Ali, Y. Umar, B. F. Abu-Sharkh and H. A. Al-Muallem,
J. Polym. Sci., Part A: Polym. Chem., 2006, 44, 5480–
5494.
International Corrosion Conference & Expo, Paper No. 34 M. A. J. Mazumder, H. A. Al-Muallem, M. Faiz and S. A. Ali,
05285, 2005.
Corros. Sci., 2014, 87, 187–198.
8 D. M. Ortega-Toledo, J. G. Gonzalez-Rodriguez, M. Casales, 35 H.-J. Butt, K. Graf and M. Kappl, Physics and Chemistry of
˜
L. Martinez and A. Martinez-Villafane, Corros. Sci., 2011,
Interfaces, Wiley-VCH, Weinheim, 2003.
53, 3780–3787.
36 M. Erbil, Chim. Acta Turc., 1988, 1, 59–70.
¨
9 F. F. Eliyan and A. Alfantazi, Corros. Sci., 2014, 85, 380–393. 37 M. Ozcan, E. Karadag and I. Dehri, Colloids Surf., A, 2008,
10 Q. Y. Liu, L. J. Mao and S. W. Zhou, Corros. Sci., 2014, 84,
165–171.
316, 55–61.
38 A. N. Frumkin, Z. Phys. Chem., 1925, 116, 466–484.
11 U. Lotz, L. Van Bodegom and C. Ouwehand, Corrosion, 1991, 39 J. O. '. M. Bockris and S. U. M. Khan, Surface Electrochemistry:
47, 635–644.
A Molecular Level Approach, Plenum press, New York and
12 G. Zhang, C. Chen, M. Lu, C. Chai and Y. Wu, Mater. Chem.
Phys., 2007, 105, 331–340.
13 S. Nesic and K. L. J. Lee, Corrosion, 2003, 59, 616–627.
London, 1993.
40 S. A. Ali, M. T. Saeed and S. U. Rahman, Corros. Sci., 2003, 45,
253–266.
14 R. H. Hausler and D. W. Stegmann, CO2 Corrosion and its 41 S. A. Ali, H. A. Al-Muallem, M. T. Saeed and S. U. Rahman,
prevention by chemical Inhibition in oil and gas production, Corros. Sci., 2008, 50, 664–675.
Proceedings of Corrosion/88, NACE International, 42 S. Z. Duan and Y. L. Tao, Interface Chemistry, Higher
Houston, Taxes, paper no. 863, 1988.
Education Press, Beijing, 1990.
This journal is © The Royal Society of Chemistry 2016
RSC Adv., 2016, 6, 12348–12362 | 12361