3
-
1
1
Both aliphatic and aromatic ketones are suitable for this conversion
Table 1 entries 1-10). In case of aliphatic substrates like acetone,
chloroacetone, methyl acetone and isopropyl acetone, the desired
aminothiazoles were obtained in moderate to good yields (Table 1,
entries 1- 4). Under these reaction conditions, ether linkages are stable
2926, 1616, 1519, 1367 cm ; H NMR (400 MHz, CDCl
3
): δ 7.77-
7
5
1
.76 (d, J = 7.7, 2H), 7.39-7.36 (d, J = 7.4, 2H), 7.30-7.35 (m, 2H),
.78 (bs, 2H); MS: m/z calcd for C
76.00.
(
9 8 2
H N S (M ): 176.26; found
20
2
-amino-4-(methyl)-1,3-thiazole (Table 1, entry 1): yellow oil,
1
H NMR (300 MHz, CDCl
3
): δ 6.13 (d, J= 0.9 Hz, 1H), 5.30 (bs,
(
Table 1, entry 7, 8). In most of the literature, it is reported that p-
26
2H), 2.18 (d, J= 0.9 Hz, 3H)
-amino-4-(p- methylphenyl)-1,3-thiazole (Table 1, entry 6):
Mp 129–131 C (Lit Mp 130-132 C); H NMR (300MHz, CDCl
.67(d, J = 6.8, 2H), 7.16 (d, J = 7.2, 2H), 7.10 (s, 1H), 6.90 (s, 2H);
10 2
MS: m/z calcd for C10H N S (M ): 190.26; found 190.00
Yadav, J. S.; Reddy, B. V. S.; Rao, Y. G.; Narsaiah, A. V.
Tetrahedron Lett.. 2008, 49, 2381.
Huang, G.; Sun, H.; Qiu, X.; Jin, C.; Lin, C.; Shen, Y.; Jiang, J.;
Veretennikov, E. A.; Pavlov, A. V. Russian. J. Org. Chem. 2013, 49,
aminoacetophenone does not react with thiourea , but in our case
aqueous NaICl is found to give the desired product (Table1, entry 9).
21
2
2
o
o
1
3
): δ
7
In conclusion, a novel, facile and highly efficient methodology has been
developed to synthesize substituted aminothiazoles using easily available
aliphatic and aromatic ketones in presence of aq. sodium iodine
dichloride under metal free conditions. The conditions are general and
applicable to variety of pharmaceutical intermediate. This methodology
is also useful for conversion of substrate like p-aminocetophenone to
corresponding aminothiazole.
+
1
2
9.
0.
2.
23.
2
Acknowledgment
575.
SMG thanks University Grants Commission (UGC) and VNT thanks
Science and Engineering Research Board (SERB), New Delhi, India, for
providing financial support.
Donohoe, T. J.; Kabeshov, M. A.; Rathi, A.H.; Smith , E. D. Org.
Biomol. Chem. 2012, 10, 1093.
Bhargava, P. N.; Singh, P. R. J. Ind. Chem. Soc. 1960, 37, 241.
Pathan S. R.; Ali M. S.; Pathan, J. S.; Purohit, S. S.; Reddy V. V. K.;
Nataraj B. R. Indi. J. Chem. 2006, 45, 1929.
2
2
4.
5.
References
2
6.
Caceres-Castillo, D.; Carballo, R. M.; Tzec-Interián, J. A.; Mena-
Rejon, G. J. Tetrahedron Lett. 2012, 53, 3934.
1
2
.
.
Baell, J. B.; Holloway, G. A. J. Med. Chem. 2010, 53, 2719.
Meissner, A.; Boshoff, H.; Vasan, M.; Duckworth, B. P.; Barry, C.
E.; Aldrich, C. C. Bioorg. & Med. Chem. 2013, 21, 6385.
Helal, M. H. M.; Salem, M. A.; El-Gaby, M. S. A.; Aljahdali, M.
Eur. J. Med. Chem. 2013, 65, 517.
Pi, Z.; Sutton, J.; Lloyd, L.; Hua, J.; Price, L.; Wu,Q.; Chang, M.;
Zheng,J.; Rehfuss, R.; Huang, C. S.; Wexler, R. R.; Lam, P. Y. S.
Bioorg. Med. Chem. 2013, 23, 4206.
3
4
.
.
5
6
.
.
Liu, R.; Huang, Z.; Murray, M. G.; Guo, X.; Liu, G. J. Med. Chem.
2
011, 54, 5747.
Romagnoli, R.; Baraldi, P. G.; Salvador, M. K.; Camacho, M. E.;
Preti, D.; Tabrizi, M. A.; Bassetto, M.; Brancale, A.; Hamel, E.;
Bortolozzi, R.; Basso, G.; Viola, G. Bioorg. Med. Chem. 2012, 20,
7
083.
7
8
9
.
.
.
Sashidhara, K. V.; Rao, K. B.; Kushwaha, V.; Modukuri, R. K.;
Verma, R.; Murthy, P. K. Eur. J. Med. Chem. 2014 , 81, 473.
Van Tilburg, E. W.; Van der Klein, P. A. M.; De Groote, M. W.;
IJzerman, A. P. Bioorg. Med. Chem. Lett. 2001, 11, 2017.
Fink, B. E.; Mortensen, D. S.; Stauffer, S. R.; Aron, Z. D.;
Katzenellengbogen, J. A. Chem. Biol. 1999, 6, 205.
1
1
0.
1.
Umadevi, B. Eur. J. Med. Chem. 2007, 42, 1144.
Hantzsch, A.; Weber, J. H. Ber. Dtsch. Chem. Ges. 1887, 20,
3
118
1
2.
(a) Zhu, Y. P. ; Yuan, J. J.; Zhao, Q.; Lian, M. ; Gao , Q. H. ; Liu, M.
C.; Yang ,Y.; Wu, A.X. Tetrahedron, 2012, 68, 173. (b) Xue, W.J.;
Zheng, K. L.; Li, H. Z.; Geo, F. F.; Wu A. X. Tetrahedron Lett. 2014,
5
5, 4212.
Siddiqui, H. L.; Iqbal, A.; Ahmed, S.; Weaver, G. Molecules, 2006,
1, 206
1
1
3.
4.
1
Karade, H.; Sathe, M.; Kaushik, M. P. Catal. Commun. 2007, 8, 741.
1
5.
Potewar, T. P.; Ingale, S. A.; Srinivasan, K. V.; Tetrahedron,
2
007, 63, 11066.
Das, B.; Reddy, S. V.; Ramu, R. J. Mol. Catal. A: Chem.
006, 252, 235.
1
6.
2
1
1
7.
8.
Narender, M.; Somi Reddy, M.; Sridhar, R.; Nageswar, K.;
Nageswar, K.; Rama Rao, K.. Tetrahydron Lett. 2005, 46, 7779.
General procedure for the synthesis of 2-aminothiazole: To a
stirred solution of thiourea (2 equiv), and ketone (1equiv) in THF (10
mL) at room temperature was slowly added aqueous NaICl
2
(0.5
equiv, 30% W/W aqueous NaICl ). The resultant reaction mixture
2
was refluxed for 12 h. After completion of reaction (TLC), the
solvent was evaporated under the vacuum. The resulted residue was
diluted with water (10 mL) and extracted with ethyl acetate (3 × 10
mL). The organic layer was separated and washed successively with
1
0% sodium bisulfate solution (2 x 10 mL), 10% sodium bicarbonate
(2 × 10 mL) and water (2 × 15 mL). The organic layer finally dried
over anhydrous sodium sulphate and concentrated under the reduced
pressure to give crude product. Pure product was obtained after silica
gel column chromatography (30% EtOAc-Hexane).
1
9
2
-amino-4-(phenyl)-1,3-thiazole (Table 1, entry 5): colorless
o o
solid, Mp 148-150 C (Lit. Mp 149-151 C); IR (neat): 3325, 3192,