D
Synlett
A. Böhm, T. Bach
Cluster
Primary Data
O
N
H
Ir
for this article are available online at http://www.thieme-con-
nect.com/products/ejournals/journal/10.1055/s-00000083 and can
H
O
O
O
H
O
OMe
N
.
be cited using the following DOI: 10.4125/pd0075th. Pmri aryD atPmri aryD at104.1
2
5
p/
d
0
0
7
5
Pthm.ri ary
D
atZ
a
heln
1
0
1
C
h
e
msytri
N
N
3
O
.
H
O
15
5a⋅16
Figure 3 Structure of chiral xanthone catalyst 15 and proposed struc-
ture of the complex between catalyst 5a and intermediate 16
References and Notes
(
1) (a) Ischay, M. A.; Anzovino, M. E.; Du, J.; Yoon, T. P. J. Am. Chem.
Soc. 2008, 130, 12886. (b) Nicewicz, D. A.; MacMillan, D. W. C.
Science 2008, 322, 77.
It is remarkable that the enantioselectivity induced by
catalyst 5a was higher than for 15. In this regard it should
be noted that the enantioselectivity does not only depend
on the steric bias of the respective catalytic unit (xanthone,
iridium complex) but is also influenced by the rate of disso-
(
2) Recent reviews: (a) Schultz, D. M.; Yoon, T. P. Science 2014, 343,
1239176/1. (b) Xi, Y.; Yi, H.; Lei, A. Org. Biomol. Chem. 2013, 11,
2387. (c) Reckenthäler, M.; Griesbeck, A. G. Adv. Synth. Catal.
2013, 355, 2727. (d) Prier, C. K.; Rankic, D. A.; MacMillan, D. W.
C. Chem. Rev. 2013, 113, 5322. (e) Zeitler, K. Angew. Chem. Int.
Ed. 2009, 48, 9785.
1
0c,25
ciation of the intermediate from the complex.
If com-
plex dissociation is more rapid than the selectivity-deter-
mining step of the reaction, the enantiomeric excess will
remain low. Indeed, it had been previously observed that
catalyst 15 can exhibit a high degree of enantioface differ-
entiation (>90% ee) if employed in appropriate reac-
(3) (a) Lu, Z.; Yoon, T. P. Angew. Chem. Int. Ed. 2012, 51, 10329.
(b) Zou, Y.-Q.; Duan, S.-W.; Meng, X.-G.; Hu, X-Q.; Gao, S.; Chen,
J.-R.; Xiao, W.-J. Tetrahedron 2012, 68, 6914. (c) Farney, E. P.;
Yoon, T. P. Angew. Chem. Int. Ed. 2014, 53, 793.
(
4) Recent reviews: (a) Brimioulle, R.; Lenhart, D.; Maturi, M. M.;
Bach, T. Angew. Chem. Int. Ed. 2015, 54, 3872. (b) Meggers, E.
Chem. Commun. 2015, 51, 3290.
10b,,25,26
tions.
Its failure to deliver similar results in the epox-
ide rearrangement had been hypothesized to be due to the
low reaction rate of the rearrangement. The same argument
could hold for catalyst 5a and it could well be possible that
the catalyst shows an improved performance in other reac-
tions. Work in this direction is ongoing.
(5) (a) Huo, H.; Shen, X.; Wang, C.; Zhang, L.; Röse, P.; Chen, L.-A.;
Harms, K.; Marsch, M.; Hilt, G.; Meggers, E. Nature (London,
U.K.) 2014, 515, 100. (b) Huo, H.; Wang, C.; Harms, K.; Meggers,
E. J. Am. Chem. Soc. 2015, 137, 9551. (c) Wang, C.; Qin, J.; Shen,
X.; Riedel, R.; Harms, K.; Meggers, E. Angew. Chem. Int. Ed. 2016,
55, 685.
In summary, chiral iridium complexes 4a and 5a were
readily available by Sonogashira cross-coupling from
known 8-ethynyl-octahydro-1H-4,7-methanoisoindol-1-
one (1a). Reduction of the ethynyl bridge in 4a delivered
the ethano-bridged complex 5a. Both complexes showed
catalytic activity in several photoredox reactions per-
formed with visible light (λ = 419 nm) but failed to induce a
significant enantioselectivity. Complex 5a was found to be
an excellent catalyst to initiate the rearrangement of spiro-
oxindole epoxide rac-13 upon irradiation at λ = 419 nm. Al-
though the induced enantioselectivity was moderate (up to
(
6) For previous work on chiral ruthenium complexes in enantiose-
lective photochemistry, see: (a) Hamada, T.; Ishida, H.; Usui, S.;
Watanabe, Y.; Tsumura, K.; Ohkubo, K. J. Chem. Soc., Chem.
Commun. 1993, 909. (b) Ohkubo, K.; Hamada, T.; Ishida, H.
J. Chem. Soc., Chem. Commun. 1993, 1423.
(7) For recent reviews on supramolecular and substrate-specific
catalysis, see: (a) Dydio, P.; Reek, J. N. H. Chem. Sci. 2014, 5,
2135. (b) Lindbäck, E.; Dawaigher, S.; Wärnmark, K. Chem. Eur. J.
2014, 20, 13432. (c) Raynal, M.; Ballester, P.; Vidal-Ferran, A.;
van Leeuwen, P. W. N. M. Chem. Soc. Rev. 2014, 43, 1660.
(d) Carboni, S.; Gennari, C.; Pignatoro, L.; Piarulli, U. Dalton
Trans. 2011, 40, 4355.
(8) Recent work: (a) Frost, J. R.; Huber, S. M.; Breitenlechner, S.;
Bannwarth, C.; Bach, T. Angew. Chem. Int. Ed. 2015, 54, 691.
29% ee), the catalyst holds promise for further use in trip-
let-sensitized reactions.
(
b) Zhong, F.; Pöthig, A.; Bach, T. Chem. Eur. J. 2015, 21, 10310.
9) Fackler, P.; Berthold, C.; Voss, F.; Bach, T. J. Am. Chem. Soc. 2010,
32, 15911.
(
1
Acknowledgment
(
10) Selected contributions: (a) Bauer, A.; Westkämper, F.; Grimme,
S.; Bach, T. Nature (London, U.K.) 2005, 436, 1139. (b) Müller, C.;
Bauer, A.; Bach, T. Angew. Chem. Int. Ed. 2009, 48, 6640.
This project was supported by the Deutsche Forschungsgemeinschaft
(DFG) in the framework of the DFG Research Training Group ‘Chemi-
(
c) Müller, C.; Bauer, A.; Maturi, M. M.; Cuquerella, M. C.;
Miranda, M. A.; Bach, T. J. Am. Chem. Soc. 2011, 133, 16689.
d) Brimioulle, R.; Bach, T. Science 2013, 342, 840. (e) Alonso, R.;
cal Photocatalysis’ (GRK 1626). A.B. acknowledges fellowship support
by the GRK.
(
Bach, T. Angew. Chem. Int. Ed. 2014, 53, 4368.
(
11) Brotschi, C.; Mathis, G.; Leumann, C. J. Chem. Eur. J. 2005, 11,
Supporting Information
1911.
Supporting information for this article is available online at
(12) (a) Sonogashira, K.; Tohda, Y.; Hagihara, N. Tetrahedron Lett.
1975, 16, 4467. (b) Sonogashira, K. In Comprehensive Organic
Synthesis; Vol. 3; Trost, B., Ed.; Pergamon Press: Oxford, 1991,
http://dx.doi.org/10.1055/s-0035-1561378.
S
u
p
p
ortioIgnfrm oaitn
S
u
p
p
ortioIgnfrm oaitn
©
Georg Thieme Verlag Stuttgart · New York — Synlett 2016, 27, A–E