JOURNAL OF
POLYMER SCIENCE
RAPID COMMUNICATION
WWW.POLYMERCHEMISTRY.ORG
of the peak at angle h)16 to be approximately 18.5 nm. The
scattering signal at approximately 23.8ꢁ is tentatively
assigned to p–p stacking (dp–p 5 3.7 Å) and is only observed
in the powder scattering profile, indicating edge-on packing
of polymer chains and possible shorter-ranged ordering in
thin films, which is consistent with previous reports.9(h,j),11(f)
€
(d) U. H. F. Bunz, D. Maker, M. Porz, Macromol. Rapid Com-
mun. 2012, 33, 886–910. (e) G. V. Shultz, L. N. Zakharov, D. R.
Tyler, Macromolecules 2008, 41, 5555–5558. (f) G. V. Shultz, J.
M. Zemke, D. R. Tyler, Macromolecules 2009, 42, 7644–7649.
8 R. H. Grubbs, Handbook of Metathesis; Wiley-VCH: Wein-
heim, 2003.
9 (a) H. Fuchigami, A. Tsumura, H. Koezuka, Appl. Phys. Lett.
1993, 63, 1372–1374. (b) H. E. A. Huitema, G. H. Gelinck, J. B. P.
H. van der Putten, K. E. Kuijk, C. M. Hart, E. Cantatore, P. T.
Herwig, A. J. J. M. van Breemen, D. M. de Leeuw, Nature 2001,
414, 599. (c) H. E. A. Huitema, G. H. Gelinck, J. B. P. H. van der
Putten, K. E. Kuijk, C. M. Hart, E. Cantatore, D. M. de Leeuw,
Adv. Mater. 2002, 14, 1201–1204. (d) T. Kobayashi, Pure Appl.
Chem. 1995, 67, 387–400. (e) A. P. Smith, R. R. Smith, B. E.
Taylor, M. F. Durstock, Chem. Mater. 2004, 16, 4687–4692. (f) L.
In summary, we have developed a facile methodology for the
preparation of a 2,5-dipropenylthiophene derivative possess-
ing predominantly cis configuration. These cis double bonds
facilitate ADMET polymerization of the monomer, leading to
PTVs of high MW. Double bond isomerization was observed
during early stages of ADEMT polymerizationwhich competes
with ADMET processes and decreases polymerization rates.
Suppressing such isomerization reactions through systematic
reaction condition optimization is currently underway. Our
method opens up doors for other cis-dipropenylarylenes and
possible preparation of novel high MW poly(arylene vinyl-
ene)s using the versatile ADMET polymerization techniques.
€
H. Nguyen, S. Gunes, H. Neugebauer, N. S. Sariciftci, F.
Banishoeib, A. Henckens, T. Cleij, L. Lusten, D. Vanderzande,
Sol. En. Mater. Sol. Cells 2006, 90, 2815–2828. (g) C. Girotto, D.
Cheyns, T. Aernouts, F. Banishoeib, L. Lutsen, T. J. Cleij, D.
Vanderzande, J. Genoe, J. Poortmans, P. Heremans, Org. Elec-
tron. 2008, 9, 740–746. (h) C. Zhang, T. Matos, S. Maaref, E.
Annih, S.-S. Sun, J. Zhang, X. Jiang, Proc. of SPIE 2008, 7052,
70520Y. (i) L. Huo, T. L. Chen, Y. Zhou, J. Hou, H.-Y. Chen, Y.
Yang, Y. Li, Macromolecules 2009, 42, 4377–4380. (j) J. Y. Kim,
Y. Qin, D. M. Stevens, O. Ugurlu, V. Kalihari, M. A. Hillmyer, C.
D. Frisbie, J. Phys. Chem. C 2009, 113, 10790–10797. (k) D. M.
Stevens, Y. Qin, M. A. Hillmyer, C. D. Frisbie, J. Phys. Chem. C
2009, 113, 11408–11415.
ACKNOWLEDGMENTS
The authors would like to acknowledge University of New Mex-
ico (UNM) for financial support for this research. National Sci-
ence Foundation (NSF) is acknowledged for supporting the NMR
facility at UNM through grants CHE-0840523 and 0946690.
10 (a) K.-Y. Jen, M. Maxifield, L. W. Shacklette, R. L.
Elsenbaumer, J. Chem. Soc. Chem. Commun. 1987, 309–311.
(b) S. Yamada, S. Tokito, T. Tsutsui, S. Saito, J. Chem. Soc.
Chem. Commun. 1987, 1448–1449. (c) M. Onoda, S. Morita, T.
Iwasa, H. Nakayama, K. Yoshino, J. Chem. Phys. 1991, 95,
8584–8591. (d) S. Gillissen, A. Henckens, L. Lusten, D.
Vanderzande, J. Gelan, Synt. Met. 2003, 135-136, 255–256. (e)
F. Banishoeib, P. Adriaensens, S. Berson, S. Guillerez, O.
Douheret, J. Manca, S. Fourier, T. J. Cleij, L. Lutsen, D.
Vanderzande, Sol. En. Mater. Sol. Cells 2007, 91, 1026–1034. (f)
F. Banishoeib, A. Henckens, S. Fourier, G. Vanhooyland, M.
Breselge, J. Manca, T. J. Cleij, L. Lutsen, D. Vanderzande, L. H.
Nguyen, H. Neugebauer, N. S. Sariciftci, Thin Solid Films 2008,
REFERENCES AND NOTES
1 Handbook of Conducting Polymers, 3rd ed.; T. A. Skotheim,
J. R. Reynolds, Eds., CRC Press: Boca Raton, 2007.
2 (a) G. Horowitz, Adv. Mater. 1998, 10, 365–377. (b) H.
Sirringhaus, Adv. Mater. 2005, 17, 2411–2425. (c) A. Facchetti,
Chem. Mater. 2011, 23, 733–758.
3 (a) J. H. Burroughes, D. D. C. Bradley, A. R. Brown, R. N.
Marks, K. Mackay, R. H. Friend, P. L. Burns, A. B. Holmes,
Nature 1990, 347, 539–541. (b) R. H. Friend, R. W. Gymer, A. B.
Holmes, J. H. Burroughes, R. N. Marks, C. Taliani, D. D. C.
Bradley, D. A. Dos Santos, J. L. Bredas, M. Logdlund, W. R.
Salaneck, Nature 1999, 397, 121–128. (c) U. Mitschke, P.
€
516, 3978–3988. (g) H. Dilien, A. Palmaerts, M. Lenes, B. de
ꢀ
€
Boer, P. Blom, T. J. Cleij, L. Lutsen, D. Vanderzande, Macromo-
lecules 2010, 43, 10231–10240.
€
Bauerle, J. Mater. Chem. 2000, 10, 1471–1507.
11 (a) J. J. L. M. Cornelissen, E. Peeters, R. A. J. Janssen, E. W.
Meijer, Acta Polym. 1998, 49, 471–476. (b) F. Goldoni, R. A. J.
Janssen, E. W. Meijer, J. Polym. Sci. A Polym. Chem. 1999, 37,
4629–4639. (c) G. Zhou, J. Li, C. Ye, Synt. Met. 2003, 135-136,
485–486. (d) K. van de Wetering, C. Brochon, C. Ngov, G.
Hadziioannou, Macromolecules 2006, 39, 4289–4297. (e) F.
Oswald, D.-M. S. Islam, Y. Araki, V. Troiani, P. de la Cruz, A.
Moreno, O. Ito, F. Langa, Chem. Eur. J. 2007, 13, 3924–3933. (f)
C. Zhang, T. Matos, R. Li, S.-S. Sun, J. E. Lewis, J. Zhang, X.
Jiang, Polym. Chem. 2010, 1, 663–669. (g) C. Zhang, J. Sun, R.
Li, S.-S. Sun, E. Lafalce, X. Jiang, Macromolecules 2011, 44,
6389–6396.
4 (a) Organic Photovoltaics: Mechanisms, Materials, and Devi-
ces; S.-S. Sun, N. S. Sariciftci, Eds., CRC Press, 2005. (b) B. C.
ꢀ
Thompson, J. M. J. Frechet, Angew. Chem. Int. Ed. 2008, 47, 58–
77. (c) Y.-J. Cheng, S.-H. Yang, C.-S. Hsu, Chem. Rev. 2009, 109,
5868–5923. (d) C. J. Brabec, S. Gowrisanker, J. M. J. Halls, D.
Laird, S. Jia, S. P. Williams, Adv. Mater. 2010, 22, 3839–3856.
5 (a) T. Yokozawa, A. Yokoyama, Chem. Rev. 2009, 109, 5595–
5619. (b) A. Kiriy, V. Senkovskyy, M. Sommer, Macromol.
Rapid Commun. 2011, 32, 1503–1517. (c) N. Marshall, S. K.
Sontag, J. Lockin, Chem. Commun. 2011, 47, 5681–5689.
6 (a) F. Babudri, G. M. Farinola, F. Naso, J. Mater. Chem. 2004, 14,
11–34. (b) A. C. Grimsdale, K. L. Chan, R. E. Martin, P. G. Jokisz, A.
B. Holmes, Chem. Rev. 2009, 109, 897–1091. (c) B. Carsten, F. He,
H. J. Son, T. Xu, L. Yu, Chem. Rev. 2011, 111, 1493–1528.
12 (a) R. Toyoshima, K. Akagi, H. Shirakawa. Synt. Met. 1997,
84, 431–432. (b) R. S. Loewe, R. D. McCullough, Chem. Mater.
2000, 12, 3214–3221. (c) J. Hou, Z. Tan, Y. He, C. Yang, Y. Li,
Macromolecules 2006, 39, 4657–4662.
7 (a) K. B. Wagener, P. S. Wolfe, In NATO ASI Series: Metathe-
sis Polymerization of Olefins and Polymerization of Alkynes;
Y. Imamoglu, Ed., Kluwer Academic Publishers: Dordrecht,
(1998), pp 277–296. (b) K. L. Opper, K. B. Wagener, J. Polym.
Sci. A. Polym. Chem. 2011, 49, 821–831. (c) H. Mutlu, L. M. de
Espinosa, M. A. R. Meier, Chem. Soc. Rev. 2011, 40, 1404–1445.
13 (a) B. Tsuie, K. B. Wagener, J. R. Reynolds, Polym. Prep.
1999, 40, 790. (b) Y. Qin, M. A. Hillmyer, Macromolecules 2009,
42, 6429–6432. (c) P. A. Delgado, D. Y. Liu, Z. Kean, K. B.
Wagener, Macromolecules 2011, 44, 9529–9532. (d) J. C.
Speros, B. D. Paulsen, S. P. White, Y. Wu, E. A. Jackson, B. S.
594
JOURNAL OF POLYMER SCIENCE, PART A: POLYMER CHEMISTRY 2014, 52, 591–595