Please do not adjust margins
New Journal of Chemistry
Page 8 of 11
ARTICLE
Journal Name
1
2
3
4
5
6
7
8
9
Clusters on Catalytic Activity for Glucose Oxidation, Angew.
Chem. Int. Ed., 2008, 47, 25, 9265-9268.
DOI: 10.1039/D0NJ04255B
5915.
2
L. X. Dien, T. Ishida, A. Taketoshi, Q-D. Truong, H. D. Chinh, T.
Honma, T. Murayama, M. Haruta, Supported gold cluster
catalysts prepared by solid grinding using a non-volatile
organogold complex for low-temperature CO oxidation and
the effect of potassium on old particle size, Appl. Catal. B,
2019, 241, 539−547.
T. Ishida, M. Nagaoka, T. Akita and M. Haruta, Chem.–Eur. J.,
2008, 14, 8456–8460.
L. X. Dien, Q. D. Truong, T. Murayama, H. D. Chinh, A.
Taketoshi, I.Honma, M. Haruta, T. Ishida, Gold Nanoparticles
Supported on Nb2O5 for Low-Temperature CO Oxidation and
as Cathode Materials for Li-ion Batteries, Appl. Catal., A,
2020, 603, 117747.
17 J. Van Rie, and W. Thielemans, Cellulose–gold nanoparticle
hybrid materials, Nanoscale, 2017, 9, 8525-8554.
18 H. Tsunoyama, N. Ichikuni, H. Sakurai and T. Tsukuda, Effect
of Electronic Structures of Au Clusters Stabilized by Poly(N-
Vinyl-2-Pyrrolidone) on Aerobic Oxidation Catalysis, J. Am.
Chem. Soc., 2009, 131, 7086-7093.
19 R. N. Dhital, A. Murugadoss and H. Sakurai, Dual Roles of
Polyhydroxy Matrices in the Homocoupling of Arylboronic
Acids Catalyzed by Gold Nanoclusters under Acidic
Conditions, Chem. Asian J., 2012, 7, 55-59.
20 J. A. Dahl, B. L. S. Maddux, and J. E. Hutchison, Toward
greener nanosynthesis, Chem. Rev., 2007, 107, 6, 2228-2269.
21 T. Tsuzki, Commercial scale production of inorganic
nanoparticles, Int. J. Nanotechnol., 2009, 6, 5-6, 567-578.
22 P. F. M. de Oliveira, R. M. Torresi, F. Emmerling and P. H. C.
Camargo, Challenges and opportunities in the bottom-up
mechanochemical synthesis of noble metal nanoparticles, J.
Mater. Chem. A, 2020, 8, 16114-16141.
23 B. Donoeva and P. E. de Jongh, Colloidal Au catalyst
preparation: selective removal of polyvinylpyrrolidone from
active Au sites, ChemCatChem, 2018, 10, 989-997.
24 H. Li, J. V. John, S. J. Byeon, M. S. Heo, J. H. Sung, K. H. Kim
and I. Kim, Controlled accommodation of metal
nanostructures within the matrices of polymer architectures
through solution-based synthetic strategies, Prog. Polym.
Sci., 2014, 39, 1878-1907.
25 R. Narayanan, M. A. El-Sayed, Effect of Catalysis on the
Stability of Metallic Nanoparticles:ꢀ Suzuki Reaction
Catalyzed by PVP-Palladium Nanoparticles, J. Am. Chem.
Soc., 2003, 125, 27, 8340–8347.
26 S. Haesuwannakij, Y. Yakiyama, and H. Sakurai, Partially
Fluoride-Substituted Hydroxyapatite as a Suitable Support
for the Gold-Catalyzed Homocoupling of Phenylboronic Acid:
An Example of Interface Modification, ACS Catal., 2017, 7, 4,
2998−3003.
27 Y. Mikami, A. Dhakshinamoorthy, M. Alvaro and H. Garcia,
Catalytic Activity of Unsupported Gold Nanoparticles, Catal.
Sci. Technol., 2013, 3, 58-69.
28 L. M. Dias Ribeiro de Sousa Martins, S. A. C. Carabineiro, J.
Wang, B. G. M. Rocha, F. J. Maldonado-Hodar and A. J.
Latourrette de Oliveira Pombeiro, Supported Gold
Nanoparticles as Reusable Catalysts for Oxidation Reactions
of Industrial Significance, ChemCatChem, 2017, 9, 1211-
1221.
29 Li. Q. Wu, A. P. Gadre, H. Yi, M. J. Kastantin, G. W. Rubloff,
W. E. Bentley, G. F. Payne, and R. Ghodssi, Voltage-
dependent assembly of the polysaccharide chitosan onto an
electrode surface, Langmuir, 2002, 18, 8620-8625.
30 E. I. Rabea, M. E. T. Badawy, C. V. Stevens, G. Smagghe, and
W. Steurbaut, Chitosan as antimicrobial agent: applications
and mode of action, Biomacromolecules, 2003, 4, 6, 1457-
1465.
3
4
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
5
6
M. Stratakis and H. Garcia, Catalysis by supported gold
nanoparticles: beyond aerobic oxidative processes, Chem.
Rev., 2012, 112, 4469-4506.
T. Tsukuda, H. Tsunoyama and H. Sakurai, Aerobic Oxidations
Catalyzed by Colloidal Nanogold, Chem. Asian J., 2011, 6,
736-748.
Y. Zhang, X. Cui, F. Shi, and Y. Deng, Nano-gold catalysis in
fine chemical synthesis, Chem. Rev., 2012, 112, 2467-2505.
J. Garcia-Calvo, V. Garcia-Calvo, S. Vallejos, F. C. Garcia, M.
Avella, J. M. Garcia, and T. Torroba, Surface coating by gold
nanoparticles on functional polymers: on-demand portable
catalysts for Suzuki reactions, ACS Appl. Mater. Interfaces,
2016, 8, 24999-25004.
H. Tsunoyama, H. Sakurai, N. Ichikuni, Y. Negishi and T.
Tsukuda, Colloidal Gold Nanoparticles as Catalyst for Carbon-
Carbon Bond Formation: Application to Aerobic
Homocoupling of Phenylboronic Acid in Water Langmuir,
2004, 20, 11293-11296.
7
8
9
10 W. Jang, H. Byun, and J. H. Kim, Encapsulated gold
nanoparticles as a reactive quasi-homogeneous catalyst in
base-free aerobic homocoupling reactions, ChemCatChem,
2020, 12, 3, 705-709.
11 M. Haruta, Gold rush, Nature, 2005, 437, 7062, 1098-1099.
12 E. Oh, K. Susumu, A. J. Makinen, J. R. Deschamps, A. L.
Huston, and I. L. Medintz, Colloidal stability of gold
nanoparticles coated with multithiol-poly (ethylene glycol)
ligands: importance of structural constraints of the sulfur
anchoring groups, J. Phy. Chem. C, 2013, 117, 37, 18947-
18956.
13 K. M. Koczkur, S. Mourdikoudis, L. Polavarapu and S. E.
Skrabalak, Polyvinylpyrrolidone (PVP) in nanoparticle
synthesis, Dalt. Trans., 2015, 44, 17883-17905.
14 A. Villa, D. Wang, D. S. Su, and L. Prati, Gold sols as catalysts
for glycerol oxidation: The role of stabilizer, ChemCatChem,
2009, 1, 4, 510-514.
15 K. Wongmanee, S. Khuanamkam, and S. Chairam, Gold
nanoparticles stabilized by starch polymer and their use as
catalyst in homocoupling of phenylboronic acid, Journal of
King Saud University - Science, 2017, 29, 5, 547-552.
16 L. M. Rossi, J. L. Fiorio, M. A. S. Garcia and C. P. Ferraz, The
Role and Fate of Capping Ligands in Colloidally Prepared
8 | J. Name., 2012, 00, 1-3
This journal is © The Royal Society of Chemistry 20xx
Please do not adjust margins