10.1002/anie.201810294
Angewandte Chemie International Edition
COMMUNICATION
[8]
[9]
T. Islamoglu, S. Goswami, Z. Li, A. J. Howarth, O. K. Farha, J. T. Hupp,
Acc. Chem. Res. 2017, 50, 805-813.
affording the corresponding products in 95% total yield with anti
to syn diastereomeric ratio (dr) of 5:1 and 88% ee for the anti
isomer (Table 1). In contrast, molecular L-proline resulted in low
diastereomeric ratio (3:2) with 93% ee for the anti isomer under
the same conditions. The improved dr catalyzed by
heterogeneous CZJ-18(Cu)-Pro may originate from the
restricted movement of the catalytic sites in the nanopore space,
the limited accessibility of the active centers to reactant
molecules and the confined formation of the cyclic transition
states for the aldol addition products. CZJ-18(Cu)-Pro can be
reused for five successive runs with almost retained catalytic
properties in the asymmetric aldol reaction. CZJ-18(Cu)-Pro is
also highly efficient and selective in asymmetric aldol addition
reaction between various aldehydes and ketones.
B. Li, H.-M. Wen, Y. Cui, W. Zhou, G. Qian, B. Chen, Adv. Mater. 2016,
28, 8819-8860.
[10] W. P. Lustig, S. Mukherjee, N. D. Rudd, A. V. Desai, J. Li, S. K. Ghosh,
Chem. Soc. Rev. 2017, 46, 3242-3285.
[11] Q.-L. Zhu, Q. Xu, Chem. Soc. Rev. 2014, 43, 5468-5512.
[12] Q.-G. Zhai, X. Bu, X. Zhao, D.-S. Li, P. Feng, Acc. Chem. Res. 2017,
50, 407-417.
[13] L. Jiao, Y. Wang, H.-L. Jiang, Q. Xu, Adv. Mater. 2017, 30, 1703663.
[14] A. H. Chughtai, N. Ahmad, H. A. Younus, A. Laypkov, F. Verpoort,
Chem. Soc. Rev. 2015, 44, 6804-6849.
[15] M. Yoon, R. Srirambalaji, K. Kim, Chem. Rev. 2012, 112, 1196-1231.
[16] H. R. Moon, D.-W. Lim, M. P. Suh, Chem. Soc. Rev. 2013, 42, 1807-
1824.
[17] A. Dhakshinamoorthy, H. Garcia, Chem. Soc. Rev. 2014, 43, 5750-
5765.
In summary, we report
a versatile metalloporphyrinic
[18] T. Zhang, W. Lin, Chem. Soc. Rev. 2014, 43, 5982-5993.
[19] J. Liu, L. Chen, H. Cui, J. Zhang, L. Zhang, C.-Y. Su, Chem. Soc. Rev.
2014, 43, 6011-6061.
framework platform, which is systematically tunable with
different functional moieties for highly efficient bioinspired
catalysis, photocatalysis and asymmetric catalysis. The catalyst
platform is significantly superior to the corresponding molecular
catalyst systems, because incorporation of different active
species in the pore space/matrices would endow them
effectively cooperative work. Since a substantial number of
functional moieties are readily being incorporated into the robust
platform, a library of highly efficient heterogeneous catalysts can
be simply created for various catalytic applications.
[20] Y. Wen, J. Zhang, Q. Xu, X.-T. Wu, Q.-L. Zhu, Coord. Chem. Rev. 2018,
376, 248-276.
[21] W. Y. Gao, M. Chrzanowski, S. Ma, Chem. Soc. Rev. 2014, 43, 5841-
5866.
[22] X. Lian, Y. Fang, E. Joseph, Q. Wang, J. Li, S. Banerjee, C. Lollar, X.
Wang, H.-C. Zhou, Chem. Soc. Rev. 2017, 46, 3386-3401.
[23] M. Zhao, S. Ou, C.-D. Wu, Acc. Chem. Res. 2014, 47, 1199-1207.
[24] W.-L. He, X.-L. Yang, M. Zhao, C.-D. Wu, J. Catal. 2018, 358, 43-49.
[25] C. D. Wagner, W. M. Riggs, L. E. Davis, J. F. Moulder, G. E.
Muilenberg, (Eds.) Handbook of X-ray photoelectron spectroscopy,
Perkin-Elmer Corporation Physical Electronics Division, Minnesota,
1979.
Acknowledgements
[26] M. S. Holzwarth, B. Plietker, ChemCatChem 2013, 5, 1650-1679.
[27] B. L. Ryland, S. S. Stahl, Angew. Chem. Int. Ed. 2014, 53, 8824-8838.
[28] J. A. Johnson, X. Zhang, T. C. Reeson, Y.-S. Chen, J. Zhang, J. Am.
Chem. Soc. 2014, 136, 15881-15884.
We are grateful for the financial support of the National Natural
Science Foundation of China (grant nos. 21373180, 21525312
and 21872122).
[29] C. Wang, K. E. deKraft, W. Lin, J. Am. Chem. Soc. 2012, 134, 7211-
7214.
[30] S. Mukherjee, J. W. Yang, S. Hoffmann, B. List, Chem. Rev. 2007, 107,
5471-5569.
Keywords: Suspended ion catalyst • Synergistic work •
Bioinspired catalysis • Photocatalysis • Asymmetric catalysis
[31] P. Kumar, N. Dwivedi, Acc. Chem. Res. 2013, 46, 289-299.
[32] D. J. Lun, G. I. N. Waterhouse, S. G. Telfer, J. Am. Chem. Soc. 2011,
133, 5806-5809.
[1]
J. T. Groves, In Cytochrome P450: structure, mechanism, and
biochemistry, 3rd ed.; Ortiz de Montellano, P. R. (Ed.) Kluwer
Academic/Plenum: New York, 2005.
[33] D. Dang, P. Wu, C. He, Z. Xie, C. Duan, J. Am. Chem. Soc. 2010, 132,
14321-14323.
[2]
[3]
[4]
[5]
T. L. Poulos, Chem. Rev. 2014, 114, 3919-3962.
C.-D. Wu, M. Zhao, Adv. Mater. 2017, 29, 1605446.
K. Chen, C.-D. Wu, Coord. Chem. Rev. 2018, 378, 445-465.
H. Furukawa, K. E. Cordova, M. O’Keeffe, O. M. Yaghi, Science 2013,
341, 1230444-1230457.
[34] C. Zhu, Q. Xia, X. Chen, Y. Liu, X. Du, Y. Cui, ACS Catal. 2016, 6,
7590-7596.
[35] J. Bonnefoy, A. Legrand, E. A. Quadrelli, J. Canivet, D. Farrusseng, J.
Am. Chem. Soc. 2015, 137, 9409-9416.
[36] C. Kutzscher, G. Nickerl, I. Senkovska, V. Bon, S. Kaskel, Chem. Mater.
2016, 28, 2573-2580.
[6]
[7]
H.-C. Zhou, S. Kitagawa, Chem. Soc. Rev. 2014, 43, 5415-5418.
G. Maurin, C. Serre, A. Cooper, G. Férey, Chem. Soc. Rev. 2017, 46,
3104-3107.
This article is protected by copyright. All rights reserved.