RSC Advances
Paper
surface area.17 It is generally known that the catalytic behavior
essentially is determined by their structural features and
chemical properties. First of all, the maintained surface area of
the aer removal of carbonous shell contribute to better
dispersion of active components, which forms optimized active
phases over the catalysts. And the modied surface with
adequate amount of carbon, which efficiently weakens the
metal-support interaction, also determines the generation of
active phases. As discussed in the previous sections, the carbon
residual modied alumina enables a higher dispersion of active
phases, and more easily reducible components contributing to
higher amount of NiMoS phase (Table 2), and further favors fast
4 A. Niquille-Rothlisberger and R. Prins, J. Catal., 2006, 242,
207–216.
¨
5 Y. Okamoto, M. Breysse, G. Murali Dhar and C. Song, Catal.
Today, 2003, 86, 1–3.
6 Y. Dong, Y. Xu, Y. Zhang, X. Lian, X. Yi, Y. Zhou and W. Fang,
Appl. Catal., A, 2018, 559, 30–39.
7 Y. Dong, X. Yu, Y. Zhou, Y. Xu, X. Lian, X. Yi and W. Fang,
Catal. Sci. Technol., 2018, 8, 1892–1904.
8 P. Rayo, P. Torres-Mancera, G. Centeno, F. Alonso,
J. A. D. Munoz and J. Ancheyta, Fuel, 2019, 239, 1293–1303.
9 Y. Villasana, F. J. Mendez, M. Luis-Luis and J. L. Brito, Fuel,
2019, 235, 577–588.
˜
´
´
´
conversion kinetics over the catalysts. However, the activity 10 J. Escobar, M. C. Barrera, A. W. Gutierrez, M. A. Cortes-
´
´
decreases with a further increase in the addition of PDA, which
should be due to the reduced surface area and decreased pop-
ulation of active phases and the lower MoS2 dispersion.
Jacome, C. Angeles-Chavez, J. A. Toledo and D. A. Solıs-
Casados, Appl. Catal., B, 2018, 237, 708–720.
11 P. A. Nikulshin, P. P. Minaev, A. V. Mozhaev, K. I. Maslakov,
M. S. Kulikova and A. A. Pimerzin, Appl. Catal., B, 2015, 176–
177, 374–384.
Conclusions
´
12 R. Obeso-Estrella, J. L. G. Fierro, J. N. D. de Leon, S. Fuentes,
˜
A general synthetic strategy aimed at mediating Ni–Mo active
G. Alonso-Nunez, E. Lugo-Medina, B. Pawelec and
site with Al2O3 support was successfully developed. Through the
T. A. Zepeda, Fuel, 2018, 233, 644–657.
surface modication by the sacricial carbon coating derived 13 L. Lv, Y. Bo, D. Ji, W. Han, H. Liu, X. Gao, C. Xu and H. Liu,
from PDA and removal of carbon layers by thermal treatment, Ind. Eng. Chem. Res., 2018, 57, 13889–13894.
NiMoAl-0 catalysts that are efficient for HDS activity of DBT can 14 B. Wang, C. Xiao, P. Li, Z. Zhao, C. Xu, Z. Zhao, Q. Meng, J. Li,
be obtained. This proper interaction between active phases and
A. Duan and Z. Chen, Ind. Eng. Chem. Res., 2018, 57, 11868–
the support induced the generation of more easily reducible Ni–
11882.
Mo species, which can obtain efficiently distributed active site 15 W. Zhou, Y. Zhang, X. Tao, Y. Zhou, Q. Wei and S. Ding, Fuel,
and obtained higher MoS2 dispersion even aer removal of the 2018, 228, 152–163.
carbon shells. Hence, the HDS catalytic activity was enhanced 16 P. Gheek, S. Suppan, J. Trawczynski, A. Hynaux, C. Sayag and
over a dopamine-mediated catalyst. However, excessive carbon G. Djega-Mariadssou, Catal. Today, 2007, 119, 19–22.
coating exerted a negative effect on the activity supported Ni Mo 17 J. Oh, T. W. Kim, K. Jeong, J. H. Park and Y. W. Suh,
catalysts. Nevertheless, the properly deposited carbon layers Chemcatchem, 2018, 10, 3892–3900.
derived from PDA pyrolysis could also contributes to the 18 L. Yang, X. Wang, Y. Liu, Z. Yu, R. Li and J. Qiu, Catal. Sci.
upgrading of commercial HDS catalysts when applied as sacri-
Technol., 2017, 7, 693–702.
cial carbon coating. The ndings afford a new avenue for the 19 Z. Zhang, X. Jiang, J. Hu, C. Yue and J. Zhang, Catal. Lett.,
´
design and synthesis of other efficient supported catalysts
2017, 147, 2515–2522.
´
through metal-support interaction tuning.
20 F. Severino, J. Laine and A. Lopez-Agudo, J. Catal., 2000, 189,
244–246.
21 H. Farag, I. Mochida and K. Sakanishi, Appl. Catal., A, 2000,
194–195, 147–157.
Conflicts of interest
There are no conicts to declare.
22 J. Whelan, M. S. Katsiotis, S. Stephen, G. E. Luckachan,
A. Tharalekshmy, N. D. Banu, J.-C. Idrobo, S. T. Pantelides,
R. V. Vladea, I. Banu and S. M. Alhassan, Energy Fuels,
2018, 32, 7820–7826.
Acknowledgements
This work is supported by the National Natural Science Foun- 23 P. A. Nikulshin, V. A. Salnikov, A. V. Mozhaev, P. P. Minaev,
dation of China (21773194, 21703179, 21473143 and 21373168), V. M. Kogan and A. A. Pimerzin, J. Catal., 2014, 309, 386–396.
and the Fundamental Research Funds for the Central Univer- 24 P. Arnoldy, E. M. Van Oers, V. H. J. De Beer, J. A. Moulijn and
sities of China (20720170103).
R. Prins, Appl. Catal., 1989, 48, 241–252.
25 Y. Fan, H. Xiao, G. Shi, H. Liu, Y. Qian, T. Wang, G. Gong and
X. Bao, J. Catal., 2011, 279, 27–35.
26 G. Mondin, M. Ha, F. M. Wisser, A. Leifert, N. Mohamed-
Notes and references
¨
1 S. A. Al-Hammadi, A. M. Al-Amer and T. A. Saleh, Chem. Eng.
J., 2018, 345, 242–251.
Noriega, S. Dorer, S. Hampel, J. Grothe and S. Kaskel,
Mater. Chem. Phys., 2014, 148, 624–630.
´
´
´
´
2 D. Gulkova, Y. Yoshimura and Z. Vıt, Appl. Catal., B, 2009, 87, 27 E. Puello-Polo, A. Gutierrez-Alejandre, G. Gonzalez and
171–180. J. L. Brito, Catal. Lett., 2010, 135, 212–218.
3 W. Huamin and I. Enrique, ChemCatChem, 2011, 3, 1166– 28 H. Lee, S. M. Dellatore, W. M. Miller and P. B. Messersmith,
1175.
Science, 2007, 318, 426–430.
11958 | RSC Adv., 2019, 9, 11951–11959
This journal is © The Royal Society of Chemistry 2019