10.1002/anie.202014328
Angewandte Chemie International Edition
COMMUNICATION
[12] a) D. Rottschafer, T. Glodde, B. Neumann, H. G. Stammler, R. S.
Ghadwal, Chem. Commun. 2020, 56, 2027‒2030; b) D. Rottschäfer, F.
Ebeler, T. Strothmann, B. Neumann, H.-G. Stammler, A. Mix, R. S.
Ghadwal, Chem. Eur. J. 2018, 24, 3716‒3720.
[13] a) R. S. Ghadwal, J.-H. Lamm, D. Rottschäfer, C. J. Schürmann, S.
Demeshko, Dalton Trans. 2017, 46, 7664‒7667; b) N. K. T. Ho, S. O.
Reichmann, D. Rottschäfer, R. Herbst-Irmer, R. S. Ghadwal, Catalysts
2017, 7, 262; c) D. Rottschäfer, C. J. Schürmann, J.-H. Lamm, A. N.
Paesch, B. Neumann, R. S. Ghadwal, Organometallics 2016, 35, 3421‒
3429; d) R. S. Ghadwal, D. Rottschäfer, C. J. Schürmann, Z. Anorg. Allg.
Chem. 2016, 642, 1236‒1240.
The quantification of stereoelectronic properties reveals
exceptional σ-donor strength and steric profile (%Vbur. = 45%) of
S-iMICs (5), which are instrumental in steering the productivity of
derived metal catalysts. As a proof of concept, this has been
shown for standard C‒C and C‒N cross-coupling reactions.
Further studies are underway that aim to introduce S-iMICs for
more challenging chemical transformations.
[14] a) D. Rottschäfer, B. Neumann, H.-G. Stammler, M. v. Gastel, D. M.
Andrada, R. S. Ghadwal, Angew. Chem. Int. Ed. 2018, 57, 4765‒4768;
b) D. Rottschäfer, N. K. T. Ho, B. Neumann, H.-G. Stammler, M. van
Gastel, D. M. Andrada, R. S. Ghadwal, Angew. Chem. Int. Ed. 2018, 57,
5838‒5842; c) D. Rottschäfer, B. Neumann, H.-G. Stammler, D. M.
Andrada, R. S. Ghadwal, Chem. Sci. 2018, 9, 4970–4976; d) D.
Rottschäfer, J. Busch, B. Neumann, H.-G. Stammler, M. van Gastel, R.
Kishi, M. Nakano, R. S. Ghadwal, Chem. Eur. J. 2018, 24, 16537‒16542.
[15] a) K. J. Iversen, D. J. D. Wilson, J. L. Dutton, Dalton Trans. 2014, 43,
12820‒12823; b) A. Hernán-Gómez, A. R. Kennedy, E. Hevia, Angew.
Chem. Int. Ed. 2017, 56, 6632‒6635; c) D. Schmidt, J. H. J. Berthel, S.
Pietsch, U. Radius, Angew. Chem. Int. Ed. 2012, 51, 8881‒8885; d) L. J.
L. Häller, M. J. Page, S. Erhardt, S. A. Macgregor, M. F. Mahon, M. A.
Naser, A. Vélez, M. K. Whittlesey, J. Am. Chem. Soc. 2010, 132, 18408‒
18416; e) A. A. Danopoulos, A. Massard, G. Frison, P. Braunstein,
Angew. Chem. Int. Ed. 2018, 57, 14550‒14554; f) S. Wurtemberger-
Pietsch, U. Radius, T. B. Marder, Dalton Trans. 2016, 45, 5880‒5895; g)
Y. Wang, H. P. Hickox, Y. Xie, P. Wei, H. F. Schaefer, G. H. Robinson,
J. Am. Chem. Soc. 2017, 139, 16109‒16112; h) P. Wang, J. Cheng, D.
Wang, C. Yang, X. Leng, L. Deng, Organometallics 2020, 39, 2871‒
2877; i) R. H. Crabtree, Chem. Rev. 2015, 115, 127‒150.
[16] a) V. Ritleng, M. Henrion, M. J. Chetcuti, ACS Catal. 2016, 6, 890‒906;
b) Y. Hoshimoto, M. Ohashi, S. Ogoshi, Acc. Chem. Res. 2015, 48,
1746‒1755; c) M. Tobisu, N. Chatani, Acc. Chem. Res. 2015, 48, 1717‒
1726.
[17] R. Jazzar, M. Soleilhavoup, G. Bertrand, Chem. Rev. 2020, 120, 4141‒
4168.
[18] N. Marion, O. Navarro, J. G. Mei, E. D. Stevens, N. M. Scott, S. P. Nolan,
J. Am. Chem. Soc. 2006, 128, 4101‒4111.
[19] M. R. Fructos, T. R. Belderrain, P. de Fremont, N. M. Scott, S. P. Nolan,
M. M. Diaz-Requejo, P. J. Perez, Angew. Chem. Int. Ed. 2005, 44, 5284‒
5288.
Acknowledgements
The authors gratefully acknowledge support from the Deutsche
Forschungsgemeinschaft (DFG GH 129/7-1) and thank Professor
Norbert W. Mitzel for his continuous encouragement. The support
by computing time provided by the Paderborn Center for Parallel
Computing (PC2) is acknowledged.
Keywords: mesoionic carbenes • ligand design • aryl migration •
C‒N bond activation • nickel catalysis
[1]
a) M. N. Hopkinson, C. Richter, M. Schedler, F. Glorius, Nature 2014,
510, 485‒496; b) Q. Zhao, G. Meng, S. P. Nolan, M. Szostak, Chem.
Rev. 2020, 120, 1981‒2048; c) A. Doddi, M. Peters, M. Tamm, Chem.
Rev. 2019, 119, 6994‒7112; d) A. Kumar, D. Yuan, H. V. Huynh, Inorg.
Chem. 2019, 58, 7545‒7553; e) A. A. Danopoulos, T. Simler, P.
Braunstein, Chem. Rev. 2019, 119, 3730‒3961; f) E. Peris, Chem. Rev.
2018, 118, 9988‒10031; g) V. Nesterov, D. Reiter, P. Bag, P. Frisch, R.
Holzner, A. Porzelt, S. Inoue, Chem. Rev. 2018, 118, 9678‒9842; h) S.
Kuwata, F. E. Hahn, Chem. Rev. 2018, 118, 9642‒9677; i) F. E. Hahn,
M. C. Jahnke, Angew. Chem. Int. Ed. 2008, 47, 3122‒3172.
a) S. Ibáñez, M. Poyatos, E. Peris, Acc. Chem. Res. 2020, 53, 1401‒
1413; b) C. A. Smith, M. R. Narouz, P. A. Lummis, I. Singh, A. Nazemi,
C.-H. Li, C. M. Crudden, Chem. Rev. 2019, 119, 4986‒5056; c) Y. Kim,
E. Lee, Chem. Eur. J. 2018, 24, 19110‒19121; d) R. S. Ghadwal, Dalton
Trans. 2016, 45, 16081‒16095; e) L. Mercs, M. Albrecht, Chem. Soc.
Rev. 2010, 39, 1903‒1912; f) J. Park, M. Yan, Acc. Chem. Res. 2013,
46, 181‒189.
[2]
[3]
[4]
a) T. Dröge, F. Glorius, Angew. Chem. Int. Ed. 2010, 49, 6940‒6952; b)
H. V. Huynh, Chem. Rev. 2018, 118, 9457‒9492.
[20] C. A. Tolman, Chem. Rev. 1977, 77, 313‒348.
[21] a) D. Cremer, E. Kraka, Dalton Trans. 2017, 46, 8323‒8338; b) D.
Setiawan, R. Kalescky, E. Kraka, D. Cremer, Inorg. Chem. 2016, 55,
2332‒2344; c) D. J. Durand, N. Fey, Chem. Rev. 2019, 119, 6561‒6594.
[22] O. Back, M. Henry-Ellinger, C. D. Martin, D. Martin, G. Bertrand, Angew.
Chem. Int. Ed. 2013, 52, 2939‒2943.
[23] K. Verlinden, H. Buhl, W. Frank, C. Ganter, Eur. J. Inorg. Chem. 2015,
2015, 2416‒2425.
[24] a) M. Chen, J. P. Moerdyk, G. A. Blake, C. W. Bielawski, J. K. Lee, J.
Org. Chem. 2013, 78, 10452‒10458; b) R. Tonner, G. Heydenrych, G.
Frenking, ChemPhysChem 2008, 9, 1474‒1481; c) H. Chen, D. R.
Justes, R. G. Cooks, Org. Lett. 2005, 7, 3949‒3952.
a) A. Liske, K. Verlinden, H. Buhl, K. Schaper, C. Ganter,
Organometallics 2013, 32, 5269‒5272; b) H. Clavier, S. P. Nolan, Chem.
Commun. 2010, 46, 841‒861; c) A. Merschel, D. Rottschäfer, B.
Neumann, H.-G. Stammler, R. S. Ghadwal, Organometallics 2020, 39,
1719‒1729; d) A. Gomez-Suarez, D. J. Nelson, S. P. Nolan, Chem.
Commun. 2017, 53, 2650‒2660; e) D. J. Nelson, S. P. Nolan, Chem. Soc.
Rev. 2013, 42, 6723‒6753; f) L. Falivene, R. Credendino, A. Poater, A.
Petta, L. Serra, R. Oliva, V. Scarano, L. Cavallo, Organometallics 2016,
35, 2286‒2293.
a) L. Falivene, Z. Cao, A. Petta, L. Serra, A. Poater, R. Oliva, V. Scarano,
L. Cavallo, Nat. Chem. 2019, 11, 872‒879; b) D. Munz, Organometallics
2018, 37, 275‒289.
a) F. M. Chadwick, B. F. E. Curchod, R. Scopelliti, F. Fadaei Tirani, E.
Solari, K. Severin, Angew. Chem. Int. Ed. 2019, 58, 1764‒1767; b) A.
Vivancos, C. Segarra, M. Albrecht, Chem. Rev. 2018, 118, 9493‒9586;
c) R. H. Crabtree, Coord. Chem. Rev. 2013, 257, 755‒766; d) G.
Guisado-Barrios, J. Bouffard, B. Donnadieu, G. Bertrand, Angew. Chem.
Int. Ed. 2010, 49, 4759‒4762; e) H. Jin, T. T. Y. Tan, F. E. Hahn, Angew.
Chem. Int. Ed. 2015, 54, 13811‒13815.
[5]
[6]
[7]
a) S. C. Sau, P. K. Hota, S. K. Mandal, M. Soleilhavoup, G. Bertrand,
Chem. Soc. Rev. 2020, 49, 1233‒1252; b) P. L. Arnold, S. Pearson,
Coord. Chem. Rev. 2007, 251, 596‒609.
[8]
[9]
S. Grundemann, A. Kovacevic, M. Albrecht, J. W. Faller, R. H. Crabtree,
Chem. Commun. 2001, 2274‒2275.
A. J. Arduengo, R. L. Harlow, M. Kline, J. Am. Chem. Soc. 1991, 113,
361‒363.
[10] E. Aldeco-Perez, A. J. Rosenthal, B. Donnadieu, P. Parameswaran, G.
Frenking, G. Bertrand, Science 2009, 326, 556‒559.
[11] a) N. K. T. Ho, B. Neumann, H.-G. Stammler, V. H. Menezes da Silva, D.
G. Watanabe, A. A. C. Braga, R. S. Ghadwal, Dalton Trans. 2017, 46,
12027‒12031; b) R. S. Ghadwal, S. O. Reichmann, R. Herbst-Irmer,
Chem. Eur. J. 2015, 21, 4247‒4251.
4
This article is protected by copyright. All rights reserved.