ACS Catalysis
Research Article
692−700. (e) Choi, J.; Fu, G. C. Transition metal catalyzed alkyl-alkyl
bond formation: Another dimension in cross-coupling chemistry.
Science 2017, 356, eaaf7230.
Enantioselective nickel-catalyzed anti-carbometallative cyclizations of
alkynyl electrophiles enabled by reversible alkenylnickel E/Z isomer-
ization. J. Am. Chem. Soc. 2016, 138, 8068−8071. (b) Zhang, X.; Xie,
X.; Liu, Y. Nickel-catalyzed cyclization of alkyne-nitriles with
organoboronic acids involving anti-carbometalation of alkynes.
Chem. Sci. 2016, 7, 5815−5820. (c) Yap, C.; Lenagh-Snow, G. M.
J.; Karad, S. N.; Lewis, W.; Diorazio, L. J.; Lam, H. W.
Enantioselective nickel-catalyzed intramolecular allylic alkenylations
enabled by reversible alkenylnickel E/Z isomerization. Angew. Chem.,
Int. Ed. 2017, 56, 8216−8220. (d) Karad, S. N.; Panchal, H.; Clarke,
C.; Lewis, W.; Lam, H. W. Enantioselective synthesis of chiral
cyclopent-2-enones by nickel catalyzed desymmetrization of malonate
esters. Angew. Chem., Int. Ed. 2018, 57, 9122−9125. (e) Ranjith
Kumar, G.; Kumar, R.; Rajesh, M.; Sridhar Reddy, M. A nickel-
catalyzed anti-carbometallative cyclization of alkyne-azides with
organoboronic acids: synthesis of 2,3-diarylquinolines. Chem.
Commun. 2018, 54, 759−762.
(12) There has been only one report of using highly active N-tosyl
alkynamides: Gillbard, S. M.; Chung, C.-H.; Karad, S. N.; Panchal, H.;
Lewis, W.; Lam, H. W. Synthesis of multisubstituted pyrroles by
nickel-catalyzed arylative cyclizations of N-tosyl alkynamides. Chem.
Commun. 2018, 54, 11769−11772.
(13) (a) Ping, Y.; Li, Y.; Zhu, J.; Kong, W. Construction of
quaternary stereocenters by palladium catalyzed carbopalladation-
initiated cascade reactions. Angew. Chem., Int. Ed. 2019, 58, 1562−
1573. (b) Schempp, T. T.; Daniels, B. E.; Staben, S. T.; Stivala, C. E.
A general strategy for the construction of functionalized azaindolines
via domino palladium-catalyzed Heck cyclization/Suzuki coupling.
Org. Lett. 2017, 19, 3616−3619 and references therein .
(14) CCDC 1870707 (3ka) contains supplementary crystallographic
data for this paper. These data can be obtained free of charge from
The Cambridge Crystallographic Data Centre.
(7) For selected examples on stereospecific cross-electrophile
reactions, see: (a) Tollefson, E. J.; Erickson, L. W.; Jarvo, E. R.
Stereospecific intramolecular reductive cross-electrophile coupling
reactions for cyclopropane synthesis. J. Am. Chem. Soc. 2015, 137,
9760−9763. (b) Erickson, L. W.; Lucas, E. L.; Tollefson, E. J.; Jarvo,
E. R. Nickel-catalyzed cross-electrophile coupling of alkyl fluorides:
stereospecific synthesis of vinylcyclopropanes. J. Am. Chem. Soc. 2016,
138, 14006−14011. For Ni-catalyzed asymmetric reductive cross-
coupling reactions, see: (c) Cherney, A. H.; Kadunce, N. T.; Reisman,
S. E. Catalytic Asymmetric Reductive Acyl Cross-Coupling: Synthesis
of Enantioenriched Acyclic α,α-Disubstituted Ketones. J. Am. Chem.
Soc. 2013, 135, 7442−7445. (d) Cherney, A. H.; Reisman, S. E.
Nickel-Catalyzed Asymmetric Reductive Cross-Coupling Between
Vinyl and Benzyl Electrophiles. J. Am. Chem. Soc. 2014, 136, 14365−
14368. (e) Poremba, K. E.; Kadunce, N. T.; Suzuki, N.; Cherney, A.
H.; Reisman, S. E. Nickel-Catalyzed Asymmetric Reductive Cross-
Coupling To Access 1,1-Diarylalkanes. J. Am. Chem. Soc. 2017, 139,
5684−5687. (f) Kadunce, N. T.; Reisman, S. E. Nickel-Catalyzed
Asymmetric Reductive Cross-Coupling between Heteroaryl Iodides
and α-Chloronitriles. J. Am. Chem. Soc. 2015, 137, 10480−10483.
(g) Anthony, D.; Lin, Q.; Baudet, J.; Diao, T. Nickel-catalyzed
asymmetric reductive diarylation of vinylarenes. Angew. Chem., Int. Ed.
2019, 58, 3198−3202. (h) Wang, Z.; Yin, H.; Fu, G. C. Catalytic
enantioconvergent coupling of secondary and tertiary electrophiles
with olefins. Nature 2018, 563, 379−383.
(8) Wang, K.; Ding, Z.; Zhou, Z.; Kong, W. Ni-catalyzed
enantioselective reductive diarylation of activated alkenes by domino
cyclization/cross-coupling. J. Am. Chem. Soc. 2018, 140, 12364−
12368.
(15) Attempts to synthesize the corresponding Ni(II) complex using
L1 as a ligand have not been successful, probably because it is too
active and unstable.
(9) (a) Li, Y.; Wang, K.; Ping, Y.; Wang, Y.; Kong, W. Nickel-
catalyzed domino Heck cyclization/Suzuki coupling for the synthesis
of 3,3-disubstituted oxindoles. Org. Lett. 2018, 20, 921−924. (b) Yen,
A.; Lautens, M. Nickel-catalyzed intramolecular arylcyanation for the
synthesis of 3,3-disubstituted oxindoles. Org. Lett. 2018, 20, 4323−
4327. (c) Yoon, H.; Marchese, A. D.; Lautens, M. Carboiodination
catalyzed by nickel. J. Am. Chem. Soc. 2018, 140, 10950−10954.
(10) For selected reviews on Ni-catalyzed cyclization of alkynes, see:
(a) Ojima, I.; Tzamarioudaki, M.; Li, Z.; Donovan, R. J. Transition
metal-catalyzed carbocyclizations in organic synthesis. Chem. Rev.
1996, 96, 635−662. (b) Saito, S.; Yamamoto, Y. Recent advances in
the transition-metal-catalyzed regioselective approaches to polysub-
stituted benzene derivatives. Chem. Rev. 2000, 100, 2901−2916.
(c) Montgomery, J. Nickel-catalyzed cyclizations, couplings, and
cycloadditions involving three reactive components. Acc. Chem. Res.
2000, 33, 467−473. (d) Montgomery, J. Nickel-catalyzed reductive
cyclizations and couplings. Angew. Chem., Int. Ed. 2004, 43, 3890−
3908. (e) Moslin, R. M.; Miller-Moslin, K.; Jamison, T. F.
Regioselectivity and enantioselectivity in nickel-catalysed reductive
coupling reactions of alkynes. Chem. Commun. 2007, 4441−4449.
(f) Nakao, Y.; Hiyama, T. Nickel-catalyzed carbocyanation of alkynes.
Pure Appl. Chem. 2008, 80, 1097−1107. (g) Jeganmohan, M.; Cheng,
C.-H. Cobalt- and nickel-catalyzed regio- and stereoselective reductive
coupling of alkynes, allenes, and alkenes with alkenes. Chem. - Eur. J.
2008, 14, 10876−10886. (h) Malik, H. A.; Baxter, R. D.;
Montgomery, J. Nickel-Catalyzed Reductive Couplings and Cycliza-
tions. In Catalysis without Precious Metals, 1st ed.; Bullock, R. M., Ed.
Wiley-VCH: Weinheim, Germany, 2010; pp 181−210. (i) Jackson, E.
P.; Malik, H. A.; Sormunen, G. J.; Baxter, R. D.; Liu, P.; Wang, H.;
Shareef, A.-R.; Montgomery, J. Mechanistic basis for regioselection
and regio divergence in nickel-catalyzed reductive couplings. Acc.
Chem. Res. 2015, 48, 1736−1745. (j) Standley, E. A.; Tasker, S. Z.;
Jensen, K. L.; Jamison, T. F. Nickel catalysis: synergy between method
development and total synthesis. Acc. Chem. Res. 2015, 48, 1503−
1514.
(16) The σ-alkyl-NiII complex 6 could be formed at room
temperature, but no target product was detected in the catalytic
reaction at room temperature, indicating that the intramolecular
carbonickelation of alkene is not the turnover-limiting step.
(17) Martínez, A.; Webber, M. J.; Muller, S.; List, B. Versatile access
̈
to chiral indolines by catalytic asymmetric Fischer indolization.
Angew. Chem., Int. Ed. 2013, 52, 9486−9490.
(18) CCDC 1878651 (8aa) contains supplementary crystallographic
data for this paper. These data can be obtained free of charge from
The Cambridge Crystallographic Data Centre.
(19) CCDC 1912176 ((3R,8S)-8aa) contains supplementary
crystallographic data for this paper. These data can be obtained free
of charge from The Cambridge Crystallographic Data Centre.
(11) For select examples of Ni-catalyzed cyclization of alkynyl
electrophiles, see: (a) Clarke, C.; Incerti-Pradillos, C. A.; Lam, H. W.
7342
ACS Catal. 2019, 9, 7335−7342