4852
Y. Chi, X. Zhang / Tetrahedron Letters 43 (2002) 4849–4852
catalytic system can tolerate the E- and Z-mixture
substrates of enamides. A small electronic effect was
observed. For example, hydrogenation of 9e bearing an
electron-donating 4-methoxy substituent in the aryl
group proceeded with the higher enantioselectivity
(entry 8, 99.5% ee) than the result obtained with 9c
(entry 3, 97.5% ee). Hydrogenation of 9f bearing an
electron-withdrawing 4-CF3 substituent in the aryl
group proceeded with the lower enantioselectivity
(entry 6, 93.1% ee). Compared with Rh-(S,S)-5a, Rh-
(S,S)-5b gave a poor enantioselectivity for hydrogena-
tion of a-arylenamide (entry 8, 49.3% ee). The effect of
3,3%-diphenyl substituent in binaphthyl backbone for
the Rh-catalyzed hydrogenation currently is under
investigation.
References
1. (a) Noyori, R. Asymmetric Catalysis in Organic Synthesis;
Wiley: New York, 1994; (b) Catalytic Asymmetric Synthe-
sis; Ojima, I., Ed.; VCH: New York, 1999; (c) Comprehen-
sive Asymmetric Catalysis; Jacobsen, E. N.; Pfaltz, A.;
Yamamoto, H., Eds.; Springer: Berlin, 1999; (d) Handbook
of Enantioselective Catalysis; Brunner, H.; Zettlmeier, W.,
Eds.; VCH: New York, 1993.
2. (a) Whitesell, J. K. Chem. Rev. 1989, 1581; (b) Rosini, C.;
Franzini, L.; Raffaelli, A.; Salvadori, P. Synthesis 1992,
503; (c) Pu, L. Chem. Rev. 1998, 98, 2405.
3. (a) Reetz, M. T.; Sell, T. Tetrahedron Lett. 2000, 41, 6333;
(b) Reetz, M. T. Pure Appl. Chem. 1997, 71, 1503; (c) Reetz,
M. T.; Neugebauer, T. Angew. Chem., Int. Ed. 1999, 38,
179; (d) Reetz, M. T.; Gosberg, A. Tetrahedron: Asymme-
try 1999, 10, 2129; (e) Reetz, M. T.; Gosberg, A.; Goddard,
R.; Kyung, S.-H. Chem. Commun. 1998, 2077.
4. Claver, C.; Fernandez, E.; Gillon, A.; Heslop, K.; Hyett,
D. J.; Martorell, A.; Orpen, A. G.; Pringle, P. G. Chem.
Commun. 2000, 961.
5. Arnold, L. A.; Imbos, R.; Mandoli, A.; deVries, A. H. M.;
Massz, R.; Feringa, B. L. Tetrahedron 2000, 56, 2865.
6. (a) Gladiali, S.; Dore, A.; Fabbri, D.; Lucchi, O. D.;
Manassero, M. Tetrahedron: Asymmetry 1994, 511; (b)
Gladiali, S.; Dore, A.; Fabbri, D. J. Org. Chem. 1994, 59,
6363; (c) Gladiali, S.; Fabbri, D. Chem. Ber. 1997, 130, 543.
7. Bitterer, F.; Herd, O.; Kuhnel, M.; Stelzer, O.; Werferling,
N.; Sheldrick, W. S.; Hahu, J.; Nagel, S.; Rosch, N. Inorg.
Chem. 1998, 37, 6408.
In conclusion, a simple and effective route for prepar-
ing phosphorus ligands bearing an 1,1%-binaphthyl
motif was established. An array of new chiral mono- or
bidentate phosphorus ligands (S)-1–(S,S)-5 were
efficiently obtained through a dilithiated species (S)-7
and (S)-4-chloro-4,5-dihydro-3H-4-phosphacyclohepta-
[2,1-a;3,4-a%]binaphthalene (S)-8. The applications of
ligands 1–5 in Rh-catalyzed asymmetric hydrogenation
were tested. Excellent enantioselectivities (93–99% ee)
have been observed in hydrogenation of an isomeric
mixture of E- and Z-b-substituted-a-arylenamides by
using Rh-(S,S)-5a as the catalyst. Other applications of
ligands 1–5 for asymmetric catalysis will be disclosed in
due course.
8. Xiao, D.; Zhang, Z.; Zhang, X. Org. Lett. 1999, 1, 1679.
9. Xiao, D.; Zhang, X. Angew. Chem., Int. Ed. 2001, 40, 3425.
10. Mecca, T.; Superchi, E. G.; Rosini, C. Tetrahedron: Asym-
metry 2001, 12, 1225.
Acknowledgements
11. Ooi, T.; Kameda, M.; Maruoka, K. J. Am. Chem. Soc.
We gratefully acknowledge the support by the National
Institutes of Health and a Camille and Henry Dreyfus
Teacher–Scholar Award. We also thank Johnson
Matthey Inc. for a generous loan of precious metals
and Supelco and Regis for a gift of chiral columns.
1999, 121, 6519.
12. Klein, H.; Jackstell, R.; Wiese, K.-D.; Borgmann, C.;
Buller, M. Angew. Chem., Int. Ed. 2001, 40, 3408.
13. Zhu, G.; Zhang, X. J. Org. Chem. 1998, 63, 9590.