Angewandte
Chemie
b) M. T. Reetz, G. Mehler, Tetrahedron Lett. 2003, 44, 4593 –
Table 2: Rhodium-catalyzed hydrogenation of olefins 9 and 11 using
ligands 14.[a]
4596; c) M. T. Reetz, G. Mehler, A. Meiswinkel, Tetrahedron:
Asymmetry 2004, 15, 2165 – 2167; see also: d) D. Peꢀa, A. J.
Minnaard, J. A. F. Boogers, A. H. M. de Vries, J. G. de Vries,
B. L. Feringa, Org. Biomol. Chem. 2003, 1, 1087 – 1089; e) A.
Duursma, R. Hoen, J. Schuppan, R. Hulst, A. J. Minnaard, B. L.
Feringa, Org. Lett. 2003, 5, 3111 – 3113.
Entry Olefin Ligand
Major enantiomer ee [%]
of 10 or 12
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
9
9
9
9
9
9
9
9
9
9
14a (S,SP:S,RP =7.8:1)
14b (S,SP pure)
14b (S,SP:S,RP =1:1)
14b (S,SP:S,RP =1:6)
14b (S,RP pure)
S
91.0
20.6
90.3
79.6
70.0
23.0
0
R
R
R
R
S
rac
R
R
R
R
S
[5] Recent examples of P ligands with stereogenic centers at
phosphorus for catalysis: a) W. Tang, X. Zhang, Chem. Rev.
2003, 103, 3029 – 3069; b) K. V. L. Crꢁpy, T. Imamoto, Adv.
Synth. Catal. 2003, 345, 79 – 101; c) P.-H. Leung, Acc. Chem. Res.
2004, 37, 169 – 177; d) W. Tang, W. Wang, Y. Chi, X. Zhang,
Angew. Chem. 2003, 115, 3633 – 3635; Angew. Chem. Int. Ed.
2003, 42, 3509 – 3511; e) G. Hoge, J. Am. Chem. Soc. 2003, 125,
10219 – 10227; f) T. Imamoto, V. L. Crꢁpy, K. Katagiri, Tetrahe-
dron: Asymmetry 2004, 15, 2213 – 2218.
[6] S. Matsunaga, J. Das, J. Roels, E. M. Vogl, N. Yamamoto, T. Iida,
K. Yamaguchi, M. Shibasaki, J. Am. Chem. Soc. 2000, 122, 2252 –
2260.
[7] The geometry of the phosphoramidito ligands is almost identical
in the crystal structures of the (S,SP)-3-benzoyloxymethyl-
derivative 6a and the (S,SP)-3-triphenylsilyl-derivative 14e.[9b]
[8] P. J. Cox, W. Wang, V. Snieckus, Tetrahedron Lett. 1992, 33,
2253 – 2256.
14c (S,SP:S,RP =1:1)
14d (S,SP pure)
14d (S,SP pure)[b]
14e (S,SP pure)
31.6
3.4
14e (S,SP pure)[b]
17.0
98.0
33.6
50.6
97.2
87.2
34.0
11 14a (S,SP:S,RP =7.8:1)
11 14b (S,SP pure)
11 14b (S,RP pure)
11 14c (S,SP:S,RP =1:1)
11 14d (S,SP pure)
11 14e (S,SP pure)
R
R
R
R
[a] Same conditions as in Table 1; 100% conversion. [b] In this case a
ligand:Rh ratio of 1:1 was chosen.
[9] a) Crystal
data
for
[{(S,Sp)-14e}2Rh(cod)]+[BF4]ꢀ
·CH2Cl2:[C88H76N2O4P2RhSi2]+[BF4]ꢀ·CH2Cl2, crystals grown
from dichloromethane/ethyl acetate/diethyl ether/pentane,
Mr = 1618.27, crystal size: 0.04 ꢂ 0.08 ꢂ 0.18 mm3; a = 9.9676(1),
b = 24.3928(1), c = 31.6031(2) ꢃ, V= 7683.9(1) ꢃ3, T= 100 K,
and raises fundamental theoretical questions. The fact that
the triphenylsilyl-derivative 14e is a poor ligand for catalysis
can be rationalized on the basis of the crystal structure of
[Rh{(S,SP)-14e}2(cod)]BF4 (Figure 1). The silyl groups are so
bulky that hydrogenation may actually be inhibited; the
rhodium complex with only one phosphoramide ligand may
function as the actual (pre)catalyst.
In summary, we have prepared and characterized a new
class of binol-derived monodentate phosphorus ligands bear-
ing phosphorus stereogenic centers. They are excellent
ligands in rhodium-catalyzed olefin hydrogenation, a result
which raises important mechanistic questions. On the prac-
tical side, this new class of modular phosphorus compounds
enlarges the structural diversity of binol-derived monoden-
tate phosphorus ligands, which means that they are also
candidates for our combinatorial approach using mixtures[4]
of chiral monodentate phosphorus ligands in hydrogenation
and in other transition-metal-catalyzed reactions.
orthorhombic, space group P212121 (No. 19), Z = 4, 1calcd
1.399 gcmꢀ3, F(000) = 3344, Nonius KappaCCD diffractometer,
l(MoKa) = 0.71073 ꢃ, m = 0.429 mmꢀ1
75490 measured and
=
,
18928 independent reflections (Rint = 0.056), 17187 with I >
2s(I), qmax = 28.288, Tmin = 0.968, Tmax = 0.996, direct methods
(SHELXS-97) and least-squares refinement (SHELXL-97) on
F2o, both programs from G. Sheldrick, University of Gꢄttingen,
1997; 964 parameters, Flack parameter ꢀ0.03(1), H atoms riding,
Chebyshev weights, R1 = 0.0392 (I > 2s(I)), wR2 = 0.0898 (all
data), D1max/min = 0.868/ꢀ0.624 eꢃꢀ3. b) CCDC-247341, CCDC-
247342, CCDC-247343 contain the supplementary crystallo-
graphic data for this paper. These data can be obtained free of
the Cambridge Crystallographic Data Centre, 12 Union Road,
Cambridge CB21EZ, UK; fax: (+ 44)1223-336-033; or deposit@
ccdc.cam.ac.uk).
[10] Examples of crystal structure of other rhodium phosphoramidite
complexes: a) A.-G. Hu, Y. Fu, J.-H. Xie, H. Zhou, L.-X. Wang,
Q.-L. Zhou, Angew. Chem. 2002, 114, 2454 – 2456; Angew.
Chem. Int. Ed. 2002, 41, 2348 – 2350; b) M. van den Berg, A. J.
Minnaard, R. M. Haak, M. Leeman, E. P. Schudde, A. Meetsma,
B. L. Feringa, A. H. M. de Vries, C. E. P. Maljaars, C. E. Willans,
D. Hyett, J. A. F. Boogers, H. J. W. Henderickx, J. G. de Vries,
Adv. Synth. Catal. 2003, 345, 308 – 323.
Received: August 12, 2004
Keywords: asymmetric catalysis · hydrogenation · P ligands ·
.
phosphites · rhodium
[1] a) M. T. Reetz, G. Mehler, Angew. Chem. 2000, 112, 4047 – 4049;
Angew. Chem. Int. Ed. 2000, 39, 3889 – 3890; b) M. T. Reetz,
Chim. Oggi 2003, 21(10/11), 5 – 8.
[2] a) M. T. Reetz, T. Sell, Tetrahedron Lett. 2000, 41, 6333 – 6336;
b) C. Claver, E. Fernandez, A. Gillon, K. Heslop, D. J. Hyett, A.
Martorell, A. G. Orpen, P. G. Pringle, Chem. Commun. 2000,
961 – 962.
[3] a) M. van den Berg, A. J. Minnaard, E. P. Schudde, J. van Esch,
A. H. M. de Vries, J. G. de Vries, B. L. Feringa, J. Am. Chem.
Soc. 2000, 122, 11539 – 11540; b) D. Peꢀa, A. J. Minnaard,
A. H. M. de Vries, J. G. de Vries, B. L. Feringa, Org. Lett. 2003,
5, 475 – 478.
[4] a) M. T. Reetz, T. Sell, A. Meiswinkel, G. Mehler, Angew. Chem.
2003, 115, 814 – 817; Angew. Chem. Int. Ed. 2003, 42, 790 – 793;
Angew. Chem. Int. Ed. 2005, 44, 412 –415
ꢀ 2005 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim
415