10 of 11
GUPTA ET AL.
[12] L.‐C. Song, X.‐F. Liu, Z.‐J. Xie, F.‐X. Luo, H.‐B. Song, Inorg. Chem. 2011,
50, 11162.
OPV device consisted of ITO (anode)/PEDOT:PSS (hole
transport layer)/Dyad:P3HT (3:1)/Al (cathode). Device with
ZnP‐C60 did not show any light effect while the device made
H2P‐C60 dyad (nonencapsulated and unoptimized) showed
promising photovoltaic property. From OPV device J‐V char-
acteristics, we calculated the open circuit voltage (Voc)
approximately 0.49 V, short circuit current (Jsc) of approxi-
mately 50 μA/cm2, and high‐fill factor of 0.57 that are much
higher than the recently reported device for quinoline‐
fluorene‐based system and previous reports (see ESI).[52,53]
Thus, the device data prove the concept of nonmetallated por-
phyrin‐fullerene dyad to be a better candidate in organic solar
cell compared with metallated dyads.
[13] X. Cao, W. Lin, Q. Yu, J Org Chem 2011, 76, 7423.
[14] A. Ellis, D. Gooch, L. J. Twyman, J Org Chem 2013, 78, 5364.
[15] J.‐K. Rhee, M. Baksh, C. Nycholat, J. C. Paulson, H. Kitagishi, M. G. Finn,
Biomacromolecules 2012, 13, 2333.
[16] P. A. Liddell, D. Kuciauskas, J. P. Sumida, B. Nash, D. Nguyen, A. L.
Moore, T. A. Moore, D. Gust, J. Am. Chem. Soc. 1997, 119, 1400.
[17] G. Kodis, P. A. Liddell, A. L. Moore, T. A. Moore, D. Gust, J. Phys. Org.
Chem. 2004, 17, 724.
[18] D. Gust, T. A. Moore, A. L. Moore, Acc. Chem. Res. 2001, 34, 40.
[19] M. E. El‐Khouly, O. Ito, P. M. Smith, F. D'Souza, J Photochem Photobiol C
2004, 5, 79.
[20] R. C. Haddon, L. E. Brus, K. Raghavachari, Chem. Phys. Lett. 1986, 125,
459.
[21] S. Kirner, M. Sekita, D. M. Guldi, Adv. Mater. 2014, 26, 1482.
[22] A. D. J. Haymet, Chem. Phys. Lett. 1985, 122, 421.
6
| CONCLUSION
[23] D. M. Guldi, Pure Appl. Chem. 2003, 75, 1069.
In conclusion, we have extensively studied a very simple sys-
tem of covalently bound donor‐acceptor dyad and compared
the photophysical properties between nonmetallated (H2P‐
C60) and metallated porphyrin‐fullerene (ZnP‐C60) dyads
to ascertain the better candidate to be used in single material
organic solar cell. H2P‐C60 shows much better properties
than ZnP‐C60 for faster oxidation of porphyrin ring at lower
voltage for the formation of charged species, high efficiency
of charge separation in variety of solvents, and formation of
long‐lived charge‐separated state. H2P‐C60 also forms stable
and defined self‐assembly that is one of the essential criterion
for efficient light harvesting, charge generation, and charge
separation. Further study of optimization of parameters for
SMOSCs is undergoing.
[24] D. M. Guldi, M. Prato, Chem Commun 2004, 22, 2517.
[25] M. H. Lee, B. D. Dunietz, E. Geva, J. Phys. Chem. C 2013, 117, 23391.
[26] A. K. Manna, B. D. Dunietz, J Chem Phys 2014, 141, 121102‐(1).
[27] M. Wang, F. Wudl, J. Mater. Chem. 2012, 22, 24297.
[28] S. Fukuzumi, K. Ohkuboa, DaltonTrans 2013, 42, 15846.
[29] M. P. Eng, B. Albinsson, Angew Chem Int Ed 2006, 45, 5626.
[30] S. V. Kirner, D. Arteaga, C. Henkel, J. T. Margraf, N. Alegret, B. K. Ohkubo,
A. Ortiz, N. Martin, L. Echegoyen, S. Fukuzumi, T. Clark, D. M. Guldi,
Chem Sc 2015, 6, 5994.
[31] F. Giacalone, J. L. Segura, N. Martin, D. M. Guldi, J. Am. Chem. Soc. 2004,
126, 5340. M. R. Wasielewski, W. B. Davis, W. A. Svec, M. A. Ratner,
Nature 1998, 396, 60. B. Albinsson, M. P. Eng, K. Pettersson, M. U. Win-
ters, Phys. Chem. Chem. Phys. 2007, 9, 5847.
[32] A. F. Mironov, Macroheterocycles 2011, 4, 186.
[33] G. D. Torre, F. Giacalone, J. L. Segura, N. Martin, D. M. Guldi, Chem. –
Eur. J. 2005, 11, 1267.
ACKNOWLEDGEMENTS
[34] A. M. Ontoria, M. Wielopolski, J. Gebhardt, A. Gouloumis, T. Clark, D. M.
Authors acknowledge DST (SB/FT/CS‐038/2014) and CSIR‐
Guldi, N. Martin, J. Am. Chem. Soc. 2011, 133, 2370.
TAPSUN for funding, and NG thanks CSIR for fellowship.
[35] M. Wielopolski, A. M. Ontoria, C. Schubert, J. T. Margraf, E. Krokos, J.
Kirschner, A. Gouloumis, T. Clark, D. M. Guldi, N. Martin, J. Am. Chem.
Soc. 2013, 135, 10372.
REFERENCES
[36] S. Wolfrum, J. R. Pinzon, A. M. Ontoria, A. Gouloumis, N. Martin, L.
[1] C. J. Brabec, N. S. Sariciftici, J. C. Hummelen, Adv. Funct. Mater. 2001, 11,
Echegoyen, D. M. Guldi, Chem.Commun. 2011, 47, 2270.
15.
[37] F. Oswald, D. M. Islam, Y. Araki, V. Troiani, R. Caballero, P. de la Cruz, O.
[2] G. Dennler, M. C. Scharber, C. J. Brabec, Adv. Mater. 2009, 21, 1323.
Ito, F. Langa, ChemCommun 2007, 43, 4498.
[3] J. L. Delgado, P. A. Bouit, S. Filippone, M. A. Herranz, N. Martin, Chem
Commun 2010, 46, 4853.
[38] F. Oswald, D. M. Islam, M. E. El‐Khouly, Y. Araki, R. Caballero, P. de la
Cruz, O. Ito, F. Langa, Phys. Chem. Chem. Phys. 2014, 16, 2443.
[4] S. Gunes, H. Neugebauer, N. S. Sariciftci, Chem. Rev. 2007, 107, 1324.
[39] D. Kuciauskas, P. A. Liddell, S. Lin, S. G. Stone, A. L. Moore, T. A. Moore,
[5] A. Opitz, J. Wagner, W. Brütting, I. Salzmann, N. Koch, J. Manara, J.
D. Gust, J Phys Chem B 2000, 104, 4307.
Pflaum, A. Hinderhofer, F. Schreiber, Quantum Electron. 2010, 16, 1707.
[40] M. R. Wasielewski, Acc. Chem. Res. 2009, 42, 1910.
[6] B. Ray, A. G. Baradwaj, M. R. Khan, B. W. Boudouris, M. A. Alam, PNAS
2015, 112, 11193.
[41] C. Schubert, J. T. Margraf, T. Clark, D. M. Guldi, Chem. Soc. Rev. 2015, 44,
988.
[7] V. C. Kumar, L. Cabau, E. N. Koukaras, G. D. Sharma, E. Palomares, Nano-
scale 2015, 7, 179.
[42] A. D. Adler, F. R. Longo, J. D. Finarelli, J. Goldmacher, J. Assour, L.
Korsakoff, J Org Chem 1967, 32, 476.
[8] M. K. Panda, K. Ladomenou, A. G. Coutsolelos, Coord. Chem. Rev. 2012,
256, 2601.
[43] R. Kumar, S. Naqvi, N. Gupta, S. Chand, RSC Adv. 2014, 4, 15675.
[44] C.‐L. Wang, W.‐B. Zhang, R. M. Van Horn, Y. Tu, X. Gong, S. Z. D. Cheng,
Y. Sun, M. Tong, J. Seo, B. B. Y. Hsu, A. H. Heeger, Adv. Mater. 2011, 23,
2951.
[9] M. G. Walter, A. B. Rudine, C. C. Wamser, J. Porphyrins Phthalocyanines
2010, 14, 759.
[10] A. Thompson, T. S. Ahn, K. R. Justin, T. S. Thayumanavan, T. J. Martínez,
[45] R. A. Marcus, J Chem Phys 1956, 24, 966.
C. J. Bardeen, J. Am. Chem. Soc. 2005, 127, 16348.
[46] Z. A. Weller, Phys Chem NeueFolge 1982, 133, 93.
[47] M. Gouterman, J Mol Spectroscopy 1961, 6, 138.
[11] A. S. Konev, A. F. Khlebnikov, T. G. Nikiforova, A. A. Virtsev, H.
Frauendorf, J Org Chem 2013, 78, 2542.