A.C. Garade et al. / Catalysis Communications 11 (2010) 942–945
945
necessary for achieving highest selectivity to DAM than Lewis acid
sites.
Catalyst recycle experiments were carried out at 353 K with
p-cresol to formaldehyde mole ratio of 5 using 20% DTP/BNT catalyst
and the results obtained are presented in Fig. 5. The catalyst was
found to retain its activity even after the third recycle experiment
showing 95% product yield. The selectivity to DAM (94%) remained
constant for all the three recycle experiments.
4. Conclusions
Among various solid acid catalysts studied, surface modified
BNT (20% DTP/BNT) catalyst showed an excellent activity (95%
product yield with 94% selectivity to DAM) for the hydroxyalkylation
of p-cresol. The increase in total acid sites concentration especially
Brønsted acid sites of 20% DTP/BNT from 4.9 to 11.6 μmolS−1 NH3 was
found to be responsible for its high activity and selectivity. 31P
(CPMAS) NMR studies showed the broadening and downfield
shifting of signal from −15.61 to −13.7 ppm after impregnation of
20% DTP on BNT due to a strong interaction of protons of bulk DTP
with surface hydroxyl groups of BNT. The 20% DTP/BNT catalyst was
found to retain its original activity even after 3rd recycle experiment.
Fig. 4. Catalyst screening for hydroxyalkylation of p-cresol. Reaction conditions: p-cresol,
42.5 mmol; formaldehyde, 8.5 mmol; mole ratio of p-cresol to formaldehyde, 5; catalyst
concentration, 0.03 g/cm3; temperature, 353 K; time, 1 h; solvent, toluene (12 cm3).
Acknowledgment
One of the authors (ACG) thanks the University Grant Commission
(UGC) New Delhi, for the award of a senior research fellowship.
to DAM. The highest product yield with 20% DTP/BNT catalyst was
due to the increase in the total concentration of acid sites especially
that of Brønsted acid sites, from 4.9 to 11.6 μmolS−1 NH3 and the
stabilization of intermediate carbocation formed during the reaction
of heteropolyanion of DTP that also facilitates the formation of DAM
[33]. Montmorillonite KSF/O showed 47% product yield, with a lower
selectivity (76%) to DAM due to the predominant formation of a
trimer (24%) facilitated by its high acidity (15.5 μmolS−1 NH3) and
the presence of Brønsted acid sites (75%) in a high temperature
region. Although, H-β-zeolite showed the total acid sites concen-
tration (11.8 μmolS−1 NH3) similar to 20% DTP/BNT, however lower
product yield (78%) with 89% selectivity to DAM was observed with
a substantial formation of carbinol (8%) due to the presence of more
Lewis acid sites (63%) in a low temperature region. Catalyst activity
results showed that Brønsted acid sites in optimal concentration are
References
[1] T. Nakato, M. Kimura, S. Nakata, T. Okuhara, Langmuir 14 (1998) 319.
[2] A. Finiels, P. Geneste, J. Lecomte, F. Marichez, C. Moreau, P. Moreau, J. Mol. Catal. A:
Chem. 148 (1999) 165.
[3] P.J. Wallis, W.P. Gates, A.F. Patti, J.L. Scott, E. Teoh, Green Chem. 9 (2007) 980.
[4] P.T. Tanev, T.J. Pinnavaia, Science 267 (1995) 865.
[5] F. Marme, G. Coudurier, J.C. Vedrine, Microporous Mesoporous Mater. 22 (1998)
151.
[6] S.K. Jana, T. Kugita, S. Namba, Catal. Lett. 90 (2003) 143.
[7] C.V. Rode, A.C. Garade, R.C. Chikate, Catal. Surv. Asia 13 (2009) 205.
[8] A. de Angelis, P. Ingallina, C. Perego, Ind. Eng. Chem. Res. 43 (2004) 1169.
[9] R.A. Reinicker, B.C. Gates, AIChE J. 20 (1974) 933.
[10] D. Das, J. Lee, S. Cheng, Chem. Commun. (2001) 2178.
[11] A.C. Garade, P.S. Niphadkar, P.N. Joshi, C.V. Rode, Chem. Lett. 39 (2010) 126.
[12] M. Alvaro, D. Das, M. Cano, H. Garcia, J. Catal. 219 (2003) 464.
[13] A. Corma, H. Garcia, J. Miralles, Microporous Mesoporous Mater. 43 (2001) 161.
[14] M. Alvaro, H. Garcia, A. Sanjuan, M. Espla, Appl. Catal. A 175 (1998) 105.
[15] A.C. Garade, V.S. Kshirsagar, C.V. Rode, Appl. Catal. A 354 (2009) 176.
[16] A.C. Garade, V.S. Kshirsagar, R.B. Mane, A.A. Ghalwadkar, U.D. Joshi, C.V. Rode,
Appl. Clay Sci. 48 (2010) 164.
[17] M. Bolognini, F. Cavani, L. Dal Pozzo, L. Maselli, F. Zaccarelli, B. Bonelli, M. Armandi,
E. Garrone, Appl. Catal. A 272 (2004) 115.
[18] A.C. Garade, V.R. Mate, C.V. Rode, Appl. Clay Sci. 43 (2009) 113.
[19] I.V. Kozhevnikov, Chem. Rev. 98 (1998) 171.
[20] N. Mizuno, Catal. Rev. Sci. Eng. 30 (1988) 339.
[21] F. Belkhadem, J.-M. Clacens, A. Bengueddach, F. Figueras, Appl. Catal. A 298 (2006)
188.
[22] Y. Kamiya, Y. Ooka, C. Obara, R. Ohnishi, T. Fujita, Y. Kurata, K. Tsuji, T. Nakajyo,
T. Okuhara, J. Mol. Catal. A: Chem. 262 (2007) 77.
[23] J.A. Dais, J.P. Osegovic, R.S. Drago, J. Catal. 183 (1999) 83.
[24] H. Su, S. Zeng, H. Dong, Y. Du, Y. Zhang, R. Hu, Appl. Clay Sci. 46 (2009) 325.
[25] W. Kuang, A. Rives, M. Fournier, R. Hubaut, Appl. Catal. A 250 (2003) 221.
[26] M.H. Bhure, I. Kumar, A.D. Natu, R.C. Chikate, C.V. Rode, Catal. Commun. 9 (2008)
1863.
[27] A.M. Camiloti, S.L. Jahn, N.D. Velasco, L.F. Moura, D. Cardoso, Appl. Catal. A 182
(1999) 107.
[28] S. Udayakumar, S. Ajaikumar, A. Pandurangan, Appl. Catal. A 302 (2006) 86.
[29] S. Uchida, K. Inumaru, M. Misono, J. Phys. Chem. B 104 (2000) 8108.
[30] P. Madhusudhan Rao, A. Wolfson, S. Kababya, S. Vega, M.V. Landau, J. Catal. 232
(2005) 210.
[31] V.M. Mastikhin, S.M. Kulikov, A.V. Nosov, I.V. Kozhevnikov, I.L. Mudrakovsky, M.N.
Timofeeva, J. Mol. Catal. 60 (1990) 65.
[32] I.V. Kozhevnikov, K.R. Kloetstra, A. Sinnema, H.W. Zandbergen, H.V. Bekkum,
J. Mol. Catal. A: Chem. 114 (1996) 287.
[33] Z. Hou, T. Okuhara, J. Mol. Catal. A: Chem. 206 (2003) 121.
Fig. 5. Catalyst recycle experiment. Reaction conditions: p-cresol, 42.5 mmol; formal-
dehyde, 8.5 mmol; mole ratio of p-cresol to formaldehyde, 5; catalyst concentration,
0.03 g/cm3; temperature, 353 K; time, 1 h; solvent, toluene (12 cm3).