Molecules 2020, 25, 1445
9 of 10
5.
O’Riordan, J.; Bhally, H.S.; Salmon, A.H.; de Zoysa, J.R. Successful treatment of carbapenemase producing
Enterobacteriaceae peritonitis: ‘Old therapy for a new bug’. Perit. Dial. Int. 2020, 40, 100–102. [CrossRef]
6.
7.
8.
9.
Michalopoulos, A.S.; Livaditis, I.G.; Gougoutas, V. The revival of fosfomycin. Int. J. Infect. Dis. 2011, 15, e732–739.
Atherton, F.R.; Hall, M.J.; Hassall, C.H.; Lambert, R.W.; Ringrose, P.S. Phosphonopeptides as antibacterial agents:
Rationale, chemistry, and structure-activity relationships. Antimicrob. Agents Chemother. 1979, 15, 677–683. [CrossRef]
Neuman, M. Recent developments in the field of phosphonic acid antibiotics. J. Antimicrob. Chemother.
Allen, J.G.; Atherton, F.R.; Hall, M.J.; Hassall, C.H.; Holmes, S.W.; Lambert., R.W.; Nisbet, L.J.;
Ringrose, P.S. Phosphonopeptides as antibacterial agents: Alaphosphin and related phosphonopeptides.
Antimicrob. Agents Chemother. 1979, 15, 684–695. [CrossRef]
10. Cheung, K.S.; Boisvert, W.; Lerner, S.A.; Johnston, M. Chloroalanyl antibiotic peptides: Antagonism of their
antimicrobial effects by L-alanine and L-alanyl peptides in Gram-negative bacteria. J. Med. Chem. 1986, 29, 2060–2068.
11. Allen, J.G.; Havas, L.; Leicht, E.; Lenox-Smith, I.; Nisbet, L.J. Phosphonopeptides as antibacterial agents:
Metabolism and pharmacokinetics of alafosfalin in animals and humans. Antimicrob. Agents Chemother.
12. Allen, J.G.; Lees, L.J. Pharmacokinetics of alafosfalin, alone and in combination with cephalexin, in humans.
13. Atherton, F.R.; Hall, M.J.; Hassall, C.H.; Holmes, S.W.; Lambert, R.W.; Lloyd, W.J.; Nisbet, L.J.; Ringrose, P.S.;
Westmacott, D. Antibacterial properties of alafosfalin combined with cephalexin. Antimicrob. Agents Chemother.
14. Welling, P.G.; Kendall, M.J.; Dean, S.; Wise, R.; Andrews, J.M. Effect of food on the bioavailability of alafosfalin,
a new antibacterial agent. J. Antimicrob. Chemother. 1980, 6, 373–379. [CrossRef]
15. Neumann, J.; Bruch, M.; Gebauer, S.; Brandsch, M. Transport of the phosphonodipeptide alafosfalin by
the H+/peptide cotransporters PEPT1 and PEPT2 in intestinal and renal epithelial cells. Eur. J. Biochem.
16. Arisawa, M.; Ohshima, J.; Ohsawa, E.; Maruyama, H.B. In vitro potentiation of cephalosporins by alafosfalin
against urinary tract bacteria. Antimicrob. Agents Chemother. 1982, 21, 706–710. [CrossRef]
17. Maruyama, H.B.; Arisawa, M.; Sawada, T. Alafosfalin, a new inhibitor of cell wall biosynthesis: in vitro
activity against urinary isolates in Japan and potentiation with beta-lactams. Antimicrob. Agents Chemother.
18. Gibson, M.M.; Price, M.; Higgins, C.F. Genetic characterization and molecular cloning of the tripeptide
permease (tpp) genes of Salmonella typhimurium. J. Bacteriol. 1984, 160, 122–130. [CrossRef]
19. Ringrose, P.S. Warhead delivery and suicide substrates as concepts in antimicrobial drug design. In The
Scientific Basis of Antimicrobial Therapy, Society of General Microbiology Symposium 38; Greenwood, D., O’Grady, F.,
Eds.; Cambridge: Cambridge, UK, 1985.
20. Atherton, F.R.; Hassall, C.H.; Lambert, R.W. Synthesis and structure-activity relationships of antibacterial
phosphonopeptides incorporating (1-aminoethyl)phosphonic acid and (aminomethyl)phosphonic acid.
J. Med. Chem. 1986, 29, 29–40. [CrossRef]
21. Andrews, J.M. Determination of minimum inhibitory concentrations. J. Antimicrob. Chemother. 2001, 48 (Suppl. 1), 5–16.
22. Clinical and Laboratory Standards Institute. M100-S22 Performance Standards for Antimicrobial Susceptibility
Testing; CLSI: Wayne, PA, USA, 2012.
23. Giakkoupi, P.; Vourli, S.; Polemis, M.; Kalapothaki, V.; Tzouvelekis, L.S.; Vatopoulos, A.C. Supplementation
of growth media with Zn2+ facilitates detection of VIM-2-producing Pseudomonas aeruginosa. J. Clin. Microbiol.
24. Trotter, A.J.; Aydin, A.; Strinden, M.J.; O’Grady, J. Recent and emerging technologies for the rapid diagnosis
of infection and antimicrobial resistance. Curr. Opin. Microbiol. 2019, 51, 39–45. [CrossRef] [PubMed]
25. Timbrook, T.T.; Spivak, E.S.; Hanson, K.E. Current and future opportunities for rapid diagnostics in
antimicrobial stewardship. Med. Clin. North Am. 2018, 102, 899–911. [CrossRef]