Dalton Transactions
Paper
2 A. M. Nonat, C. Allain, S. Faulkner and T. Gunnlaugsson,
Inorg. Chem., 2010, 49, 8449–8456.
3 W. S. Perry, S. J. A. Pope, C. Allain, B. J. Coe,
A. M. Kenwright and S. Faulkner, Dalton Trans., 2010, 39,
10974–10983.
4 N. M. Tart, D. Sykes, I. Sazanovich, I. S. Tidmarsh and
M. D. Ward, Photochem. Photobiol. Sci., 2010, 9, 886–889.
5 F.-F. Chen, Z.-Q. Bian, B. Lou, E. Ma, Z.-W. Liu, D.-B. Nie,
Z.-Q. Chen, J. Bian, Z.-N. Chen and C.-H. Huang, Dalton
Trans., 2008, 5577–5583.
6 S. J. A. Pope, B. J. Coe, S. Faulkner and R. H. Laye, Dalton
Trans., 2005, 1482–1490.
7 S. I. Klink, H. Keizer and F. C. J. M. Van Veggel, Angew.
Chem., Int. Ed., 2000, 39, 4319–4321.
8 K. Sénéchal-David, S. J. A. Pope, S. Quinn, S. Faulkner and
T. Gunnlaugsson, Inorg. Chem., 2006, 45, 10040.
9 A. Beeby, I. M. Clarkson, R. S. Dickins, S. Faulkner,
D. Parker, L. Royle, A. S. de Sousa, J. A. Gareth Williams
and M. Woods, J. Chem. Soc., Perkin Trans. 2, 1999, 493–
504.
Conclusions
A [RuII(tpy)2]2+-type metalloligand functionalised with a dipico-
linic acid chelate has been synthesised and characterised as a
visible light absorbing antennae for sensitised LnIII emission,
since complexes of this type may be useful for the further
development of NIR emitting biological imaging agents.
Unfortunately, the anticipated formation of 3 : 1 d–f complexes
was not successful, due to a decrease in the complex stability
constants, which were found to be orders of magnitude lower
than the DPA2− ligand. This unanticipated result, attributed to
a decrease in chelate strength due to the adjacent RuII
complex, thwarted our attempts to characterise the photo-
physical properties of the desired 3 : 1 metallostar complexes.
Characterisation of the 1 : 1 d–f complexes was undertaken
instead, and sensitised NIR emission using LnIII = Nd, Yb and
Er was demonstrated. Moreover, using steady state emission
and transient absorption techniques, we were able to establish
the thermalised RuII 3MLCT excited state acts as an energy
donor, after initial 1MLCT excitation and rapid ISC. Analysis of
the decay kinetics allowed both the energy transfer rate and 10 T. Lazarides, D. Sykes, S. Faulkner, A. Barbieri and
sensitisation efficiencies to be estimated, and these were M. D. Ward, Chemistry, 2008, 14, 9389–9399.
found to be similar to a series of [(toltpy)RuII(tpyPh-tpy) 11 E. G. Moore, M. Benaglia, G. Bergamini and P. Ceroni,
LnIII(NO3)3] complexes (Ln = Nd, Yb) we reported previously.11
Eur. J. Inorg. Chem., 2015, 2015, 414–420.
Considering their structural similarity, and the almost identi- 12 E. A. Medlycott and G. S. Hanan, Chem. Soc. Rev., 2005, 34,
cal separation between the RuII and 4f metal ions, the mecha-
133–142.
nism for the observed energy transfer has been attributed to a 13 J. M. Hamilton, M. J. Anhorn, K. A. Oscarson,
Dexter type superexchange, which is also consistent with pre-
vious reports.10
J. H. Reibenspies and R. D. Hancock, Inorg. Chem., 2011,
50, 2764–2770.
Considering the results reported herein, it is obvious that 14 A.-L. Gassner, C. Duhot, J.-C. G. Bünzli and A.-S. Chauvin,
decreasing the intramolecular separation between metals ions Inorg. Chem., 2008, 47, 7802–7812.
should lead to a faster rate of energy transfer and improved 15 A. Aebischer, F. Gumy and J. C. Bunzli, Phys. Chem. Chem.
sensitisation efficiencies for LnIII emission, and our efforts
Phys., 2009, 11, 1346–1353.
toward preparing [RuII(tpy)2]2+-type metalloligands with 16 A. S. Chauvin, F. Gumy, D. Imbert and J. C. G. Bünzli,
shorter linkers will be reported in due course. Similarly, fusing
Spectrosc. Lett., 2004, 37, 517–532.
a [RuII(tpy)2]2+ antennae chromophore to a multidentate 17 J. Andres and K. E. Borbas, Inorg. Chem., 2015, 54, 8174–8176.
chelate (e.g. DOTA, 1,4,7,10-tetraazacyclododecane-1,4,7,10- 18 H.-J. Park, S.-B. Ko, I. W. Wyman and S. Wang, Inorg.
tetraacetic acid) will be expected to yield a significant improve-
Chem., 2014, 53, 9751–9760.
ment in the aqueous stability, whilst also saturating the LnIII 19 J. Andres and A. S. Chauvin, Phys. Chem. Chem. Phys., 2013,
coordination sphere as a 1 : 1 d–f complex, and these activities
15, 15981–15994.
are also underway.
20 A. D’Aléo, A. Picot, P. L. Baldeck, C. Andraud and O. Maury,
Inorg. Chem., 2008, 47, 10269.
21 R. Xiong, D. Mara, J. Liu, R. Van Deun and K. E. Borbas,
J. Am. Chem. Soc., 2018, 140, 10975–10979.
22 J. Kim, D.-g. Kang, S. K. Kim and T. Joo, Phys. Chem. Chem.
Phys., 2020, 22, 25811–25818.
Conflicts of interest
There are no conflicts to declare.
23 G. Dehaen, S. V. Eliseeva, P. Verwilst, S. Laurent, L. Vander
Elst, R. N. Muller, W. De Borggraeve, K. Binnemans and
T. N. Parac-Vogt, Inorg. Chem., 2012, 51, 8775–8783.
24 S. Katagiri, R. Sakamoto, H. Maeda, Y. Nishimori, T. Kurita
and H. Nishihara, Chem. – Eur. J., 2013, 19, 5088–5096.
25 C. J. Aspley and J. A. Gareth Williams, New J. Chem., 2001,
25, 1136–1147.
Acknowledgements
Financial support by the Australian Research Council
(DP170101895) is gratefully acknowledged.
26 F. Barigelletti, L. Flamigni, V. Balzani, J.-P. Collin,
J.-P. Sauvage, A. Sour, E. C. Constable and A. M. W. Cargill
Thompson, J. Am. Chem. Soc., 1994, 116, 7692–7699.
Notes and references
1 M. D. Ward, Coord. Chem. Rev., 2007, 251, 1663–1677.
This journal is © The Royal Society of Chemistry 2021
Dalton Trans., 2021, 50, 7400–7408 | 7407