Md. D. Hossain, T. Kitamura / Tetrahedron Letters 47 (2006) 7889–7891
7891
Kagaku Kyokaishi 2000, 58, 1048–1056, Chem. Abstr.
2000, 133, 362660; (p) Mamaeva, E. A.; Bakibaev, A. A.
Izv. Vyssh. Uchebn. Zaved. Khim. Khim. Tekhnol. 2000, 43,
53–64, Chem. Abstr. 2000, 133, 266754; (q) Zhdankin, V.
V.; Stang, P. J. Chem. Rev. 2002, 102, 2523–2584; (r)
Tohma, H.; Kita, Y. Adv. Synth. Catal. 2004, 346, 111–
124; (s) Tohma, H.; Kita, Y. Yuki Gosei Kagaku Kyokaishi
2004, 62, 116–127; (t) Hypervalent Iodine Chemistry (Top.
Curr. Chem. 224); Wirth, T., Ed.; Springer: Berlin,
Heidelberg, 2003; (u) Togo, H.; Sakuratani, K. Synlett
2002, 1966–1975; (v) Varvoglis, A. Synthesis 1984, 709–
726; (w) Moriarty, R. M.; Prakash, O. Acc. Chem. Res.
1986, 19, 244–250.
of PhI(OAc)2. We have already obtained the evidence
that the reaction of iodobenzene with K2S2O8/H2SO4
in AcOH effectively proceeds to give (diacetoxy-
iodo)benzene. Therefore, it is considered that, once
iodoarenes are formed, they are immediately oxidized
to give ArI(OAc)2 under the reaction conditions.
In summary, our easy, cheap, and possibly environmen-
tally benign one-pot procedure reported in this paper
gave (diacetoxyiodo)arenes in good yields by the reac-
tion of arenes with K2S2O8, iodine, C2H4Cl2, and AcOH
in the presence of concd H2SO4 at 40 ꢁC. In our opinion,
the herein presented (diacetoxyiodo)arenes can be safely
scaled up.
7. Willgerodt, C. Ber. Dtsch. Chem. Ges. 1892, 25, 3494–
3502.
8. McKillop, A.; Kemp, D. Tetrahedron 1989, 45, 3299–
3306.
9. Kazmierczak, P.; Skulski, L. Synthesis 1998, 1721–1723.
10. Kazmierczak, P.; Skulski, L.; Kraszkiewicz, L. Molecules
2001, 6, 881–891.
References and notes
11. (a) Zielinska, A.; Skulski, L. Molecules 2002, 7, 806–809;
(b) Zielinska, A.; Skulski, L. Molecules 2005, 10, 190–194.
12. Rocaboy, C.; Gladysz, A. Chem. Eur. J. 2003, 9, 88–95.
13. Alcock, N. W.; Waddington, T. D. J. Chem. Soc. 1963,
4103–4109.
14. Karele, B.; Neilans, O. Latv. PSR Zinat. Akad. Vestis,
Kim. Ser. 1970, 587–590, Chem. Abstr. 1971, 74, 42033.
15. Ye, C.; Twamley, B.; Shreeve, J. M. Org. Lett. 2005, 7,
3961–3964.
16. (a) Zupan, M.; Iskra, J.; Stavber, S. Tetrahedron Lett.
1997, 38, 6305–6306; (b) Stavber, S.; Kralj, P.; Zupan, M.
Synlett 2002, 598–600; (c) Stavber, S.; Kralj, P.; Zupan,
M. Synthesis 2002, 1513–1518; (d) Stavber, S.; Jereb, M.;
Zupan, M. Chem. Commun. 2002, 488–489.
17. (a) Hossain, M. D.; Kitamura, T. Synthesis 2005, 1932–
1934; (b) Hossain, M. D.; Kitamura, T. J. Org. Chem.
2005, 70, 6984–6986.
18. General procedure (Table 1, Scheme 2): A solution of an
appropriate arene (1.18 mmol) in a mixture of AcOH
(5 mL), C2H4Cl2 (2 mL), concd H2SO4 (4 mmol), and I2
(0.5 mmol) was heated with stirring to 40 ꢁC for 15 min.
Next, K2S2O8 (5 mmol) was added portionwise during
10 min and the stirring was continued until TLC analysis
indicated completion of reaction. The reaction needed 12–
30 h. After the reaction was completed, water (10 mL) was
added. The precipitated solid was collected by filtration
under reduced pressure, washed with CH2Cl2 (10 mL), and
discarded. The crude product was obtained by extraction
of the filtrate with dichloromethane (3 · 10 mL) and
finally washed with H2O (10 mL) followed by drying
(anhydrous Na2SO4), filtration, and removal of the solvent
by evaporation under reduced pressure. The crude product
was purified by washing with hexane (20 mL) or recrys-
tallized from AcOH. Large-scale (Table 1, entry 4)
synthesis was conducted for (diacetoxyiodo)benzene in a
similar manner. A solution of benzene (4.62 g, 59 mmol) in
a mixture of AcOH (100 mL), C2H4Cl2 (100 mL), concd
H2SO4 (200 mmol), and I2 (6.34 g, 25 mmol) was heated
with stirring to 40 ꢁC. Next, K2S2O8 (250 mmol) was
added portionwise over 20 min and the stirring was
continued for 30 h. Workup of the reaction mixture gave
the purified product (10.79 g, 64%).
1. Willgerodt, C. Die Organischen Verbindungen mit Mehrw-
ertigem Jod; Enke: Stuttgart, 1914.
2. Reviews on (diacetoxyiodo)arenes: (a) Varvoglis, A.
Chem. Soc. Rev. 1981, 10, 377–407; (b) Merkushev, E. B.
Russ. Chem. Rev. (Eng. Transl.) 1987, 56, 826–845; (c)
Kirschning, A. J. Prakt. Chem./Chem.-Ztg. 1998, 340,
184–186; (d) Pohnert, G. J. Prakt. Chem. 2000, 342, 731–
734; (e) Tohma, H. Yakugaku Zasshi 2000, 120, 620–629,
Chem. Abstr. 2000, 133, 222460; (f) Arisawa, M.; Tohma,
H.; Kita, Y. Yakugaku Zasshi 2000, 120, 1061–1073,
Chem. Abstr. 2001, 134, 29586.
3. Varvoglis, A. The Organic Chemistry of Polycoordinated
Iodine; VCH: Weinheim, 1992.
4. Stang, P. J.; Zhdankin, V. V. Chem. Rev. 1996, 96, 1123–
1178.
5. (a) Sharefkin, J. G.; Salzman, H. In Org. Syntheses; Wiley:
New York, 1973; Collect. V, pp 660–663; (b) Jing, C.;
Nianfa, Y.; Xianghao, Y. Jingxi Huagong Zhongjianti
2003, 33, 36–37, Chem. Abstr. 2004, 141, 104208; (c)
Ryuichi, K. Jpn. Kokai Tokkyo Koho JP 2003238496,
2003; Chem. Abstr. 2003, 139, 197258.
6. Recent reviews on organohypervalent iodine compounds
and their applications in organic synthesis: (a) Kitamura,
T.; Fujiwara, Y. Org. Prep. Proced. Int. 1997, 29, 409–458;
(b) Varvoglis, A. Tetrahedron 1997, 53, 1179–1255; (c)
Muraki, T.; Togo, H.; Yokoyama, M. Rev. Heteroat.
Chem. 1997, 17, 213–243; (d) Togo, H.; Hoshina, Y.;
Nogami, G.; Yokoyama, M. Yuki Gosei Kagaku Kyokaishi
1997, 55, 90–98, Chem. Abstr. 1997, 126, 156952; (e)
Moriarty, R. M.; Prakash, O. Adv. Heterocycl. Chem.
1998, 69, 1–87; (f) Kirschning, A. Eur. J. Org. Chem. 1998,
11, 2267–2274; (g) Zhdankin, V. V.; Stang, P. J. Tetra-
hedron 1998, 54, 10927–10966; (h) Varvoglis, A.; Spyrou-
dis, S. Synlett 1998, 221–232; (i) Ochiai, M. Kikan Kagaku
Sosetsu 1998, 34, 181–193, Chem. Abstr. 1998, 129,
216196; (j) Ochiai, M. Farumashia 1999, 35, 140–144,
Chem. Abstr. 1999, 130, 153211; (k) Kita, Y.; Egi, M.;
Takada, T.; Tohma, H. Synthesis 1999, 885–897; (l) Wirth,
T.; Hirt, U. H. Synthesis 1999, 1271–1287; (m) Chemistry
of Hypervalent Compounds; Akiba, K., Ed.; Wiley-VCH:
New York, 1999; (n) Grushin, V. V. Chem. Soc. Rev. 2000,
29, 315–324; (o) Ochiai, M.; Kitagawa, Y. Yuki Gosei