LIQUID PHASE SYNTHESIS OF MTBE
311
bridging hydroxyls (SiOHAl), whereas in H-Beta, in ad-
REFERENCES
dition, surface silanols also contribute to the adsorption
of the alcohol. Following those authors, H-Beta contains
eight times more silanols per gram zeolite than the other
two zeolites, and larger adsorbate complexes are formed in
H-Beta than in H-ZSM-5 and H-Y. The high hydroxyl con-
centration in Beta zeolites has been related to the high de-
gree of structural disorder (40–42). Moreover, Hunger and
Horvath (39) observed that the methanol molecules are less
tightly bonded on silanols than on bridging OH, 70% of the
methanol molecules involved in the adsorbed complexes
being weakly hydrogen-bonded at silanol groups. The in-
tervention of the silanol groups was recently confirmed by
in situ MAS-NMR spectroscopy of MTBE synthesis under
continuous flow conditions (43).
1. Lee, A. K. K., and Al-Jarallah, A., Chem. Econ. Eng. Rev. 18, 25 (1986).
2. Takezono, T., and Fujiwara, Y., U.S. Patent 4,182,913 (1980).
3. Vincencio, G. T., Ramos, A. O., Villanveva, J. R., and Lopez, G. P.,
Rev. Inst. Mexicano Petrol. 14, 66 (1987).
4. Hutchings, G. J., Nicolaides, C. P., and Scurrell, M. S., Catal. Today 15,
23 (1992).
5. Cheng, S., Wang, J.-T., and Lin, C.-L., J. Chin. Chem. Soc. 38, 529
(1991).
6. Feeley, O. C., Johansson, M. A., Herman, R. G., and Klier, K., Prep.
Pap. Am. Chem. Soc. Div. Fuel Chem. 37, 1817 (1992).
7. Quiroga, M. E., Figoli, N. S., and Sedran, U. A., Chem. Eng. J. 67, 199
(1997).
8. Chang, K.-H., Kim, G.-J., and Ahn, W.-S., Ind. Eng. Chem. Res. 31, 125
(1992).
9. Richter, M., Zubowa, H.-L., Eckelt, R., and Fricke, R., Microporous
Mater. 7, 119 (1996).
The ZB75 sample contains ca. 40% more silanol groups
than ZB25 (Table 1) and the share of methanol adsorbed on
these weak adsorption sites must be larger in ZB75 than in
ZB25. It seems that zeolite ZB75 offers an optimum com-
bination of methanol and isobutene adsorption sites. Ultra-
stable Y zeolites contain much less mesopores and silanol
groups. Their much lower activity compared to zeolite Beta
samples may be related to these different properties.
10. Richter, M., Fischer, H., Bartoszek, M., Zubowa, H.-L., and Fricke,
R., Microporous Mater. 8, 69 (1997).
11. Shikata, S., Okuhara, T., and Misono, M., J. Mol. Catal. A 100, 49
(1995).
12. Baronetti, G., Briand, L., Sedran, U., and Thomas, H., Appl. Catal. A
172, 265 (1998).
13. Shikata, S., Nakata, S.-I., Okuhara, T., and Misono, M., J. Catal. 166,
263 (1997).
14. Yadav, G. D., and Kirthivasan, N., J. Chem. Soc. Chem. Commun., 203
(1995).
15. Chu, W. L., Yang, X. G., Ye, X. K., and Wu, Y., React. Kinet. Catal.
Lett. 62, 333 (1997).
CONCLUSIONS
16. Chu, P., and Ku¨hl, G. H., Ind. Eng. Chem. Res. 26, 365 (1987).
17. Pien, S. I., and Hatcher, W. J., Chem. Eng. Comm. 93, 257 (1990).
18. Le Van Mao, R., Carli, R., Ahlafi, H., and Ragaini, V., Catal. Lett. 6,
321 (1990).
Zeolite H-Beta samples with Si/Al ratios of 12.2 and
36 and a small crystal size exhibit a higher activity than
Amberlyst-15 at temperatures between 40 and 100◦C and 19. Nikolopoulos, A. A., Oukaci, R., Goodwin, J. G., Jr., and Marcelin,
G., Prep. Pap. Am. Chem. Soc. Div. Petrol. Chem. 37, 787 (1992).
similar MTBE selectivity up to about 90% conversion of
isobutene. At high conversion, the acid resin is slightly more
selective than the H-Beta zeolites, because the side reac-
tion of oligomerization of isobutene is more pronounced in
20. Nikolopoulos, A. A., Kogelbauer, A., Goodwin, J. G., Jr., and
Marcelin, G., Appl. Catal. A 119, 69 (1994).
21. Kogelbauer, A., Nikolopoulos, A. A., Goodwin, J. G., Jr., and
Marcelin, G., J. Catal. 152, 122 (1995).
H-Beta. On H-Beta, the activity decreases with increasing 22. Kogelbauer, A., Nikolopoulos, A. A., Goodwin, J. G., Jr., and
Marcelin, G., in “Studies in Surface Science and Catalysis,” Vol. 84,
p. 1685. Elsevier, Amsterdam, 1994.
23. Nikolopoulos, A. A., Kogelbauer, A., Goodwin, J. G., Jr., and
MeOH/IB ratio, while the opposite is true on Amb.-15.
On both types of catalysts, the MTBE selectivity in-
creases with increasing MeOH/IB ratio. On H-Beta zeolite,
Marcelin, G., J. Catal. 158, 76 (1996).
MTBE seems to be converted in a secondary reaction
into isobutene oligomers and methanol. This undesirable
secondary reaction can be counteracted by increasing the
MeOH/IB ratio or by increasing WHSV. The activity of
H-Beta zeolites is proportional to their specific external
surface area. The most active and selective H-Beta (ZB75)
sample adsorbs isobutene and methanol in stoichiometric
amounts. This sample, with Si/Al = 36 and external surface
areaof218m2 g−1, containsahigherconcentrationofsilanol
groups exposed in the mesopores and does not contain ex-
traframework Al.
24. Ahmed, S. M., El-Faer, M. Z., Abdillahi, M. M., Shirokoff, J., Siddiqui,
M. A. B., and Barri, S. A. I., Appl. Catal. A 161, 47 (1997).
25. Quiroga, M. E., Figoli, N. S., and Sedran, U. A., React. Kinet. Catal.
Lett. 63, 75 (1998).
26. Collignon, F., Mariani, M., Moreno, S., Remy, M., and Poncelet, G.,
J. Catal. 166, 53 (1997).
27. Hunger, M., Horvath, T., and Weitkamp, J., in “Proceedings, DGMK
Conference ‘C4 Chemistry—Manufacture and Uses of C4 Hydrocar-
bons,’ ” p. 65. Ger. Soc. Petrol. Coal Sci. Techn., 1997.
28. Caullet, P., Hazm, J., Guth, J. L., Joly, J. F., and Raatz, F., Zeolites 12,
240 (1992).
29. Remy, M. J., and Poncelet, G., J. Phys. Chem. 99, 773 (1995).
30. Barrett, E. P., Joyner, L. G., and Halenda, P. P., J. Am. Chem. Soc. 73,
373 (1951).
31. Niwa, M., Katada, N., Sawa, M., and Murakami, Y., J. Phys. Chem. 99,
8812 (1995).
ACKNOWLEDGMENTS
32. Katada, N., Iijima, S., Igi, H., and Niwa, M., in “Studies in Surface
Science and Catalysis,” Vol. 105, p. 1227. Elsevier, Amsterdam, 1997.
33. Volosch, M., Ladisch, M. R., and Tsao, G. T., React. Polymers 4, 9
(1986).
F.C. is indebted to F.R.I.A. (Belgium) for a doctoral grant. J.A.M. and
P.A.J. acknowledge the Belgian and Flemish governments for research
grants within the frame of I.U.A.P. and G.O.A., respectively.