The Journal of Organic Chemistry
ARTICLE
deep red band was collected. After evaporation of solvents, the residue
’ REFERENCES
was purified by reprecipitation with CH2Cl2ꢀMeOH to give 2 as a red
(1) (a) Anthony, J. E. Chem. Rev. 2006, 106, 5028–5048. (b) W€urthner,
F.; Schmidt, R. ChemPhysChem 2006, 7, 793–797. (c) Murphy, A. R.;
Frꢀechet, J. M. J. Chem. Rev. 2007, 107, 1066–1096. (d) Anthony, J. E. Angew.
Chem., Int. Ed. 2008, 47, 452–483. (e) Allard, S.; Forster, M.; Souharce, B.;
Thiem, H.; Scherf, U. Angew. Chem., Int. Ed. 2008, 47, 4070–4098.
(2) Jurchescu, O. D.; Baas, J.; Palstra, T. T. M. Appl. Phys. Lett. 2004,
84, 3061–3063.
1
solid (203 mg, 63% yield): mp 184 °C; H NMR (CDCl3) δ 9.72
(s, 2H), 9.07 (dd, J = 6.8 and 3.4 Hz, 2H), 8.15 (dd, J = 6.8 and 3.4 Hz,
2H), 7.58 (dd, J = 6.8 and 3.4 Hz, 2H), 7.49 (dd, J = 6.8 and 3.4 Hz, 2H),
2.50 (s, 6H); 13C NMR (CDCl3) δ 134.1, 133.8, 132.1, 132.0, 128.6,
127.8, 126.7, 126.4, 125.9, 20.4. Anal. Calcd for C20H16S2: C, 74.96; H,
5.03. Found: C, 75.01; H, 5.17.
(3) (a) Sundar., V. C.; Zaumseil, J.; Podzorov, V.; Menard, E.; Willet,
R. L.; Someya, T.; Gershenson, M. E.; Rogers, J. A. Science 2004,
303, 1644–1646. (b) Takeya, J.; Yamagishi, M.; Tominari, Y.; Hirahara,
R.; Nakazawa, Y.; Nishikawa, T.; Kawase, T.; Shimoda, T.; Ogawa, S.
Appl. Phys. Lett. 2007, 90, 102120–1ꢀ3.
5,11-Bis(methylthio)tetracene (3). A 1:1 mixture of 5,11- and 5,12-
dibromotetracenes (8 and 80) (1.78 g), which was prepared in 82%
yield according to the literatures,14b,15c was recrystallized from hot
toluene to give a 2.55:1 mixture of them (1.15 g, 2.98 mmol in total).
To this mixture in dry Et2O (500 mL) at ꢀ78 °C under Ar in the dark
was added a n-pentane solution of t-BuLi (1.58 M, 8.3 mL, 13.1 mmol),
and the resulting mixture was stirred at ꢀ78 °C for 1 h, and then
dimethyl disulfide (2.1 mL, 23.3 mmol) was added to this mixture at
ꢀ78 °C. The reaction mixture was allowed to warm to room
temperature overnight. Workup and purification were carried out
under air but without room light. The resulting reaction mixture was
quenched with H2O at 0 °C and then extracted with Et2O. The organic
layer was washed with H2O and brine and dried over Na2SO4. After
evaporation of solvent, the residue was subjected to column chroma-
tography on silica gel eluted with CHCl3ꢀhexane (1:1) to give a 3.00:1
mixture of 3 and 2 (316 mg in total, corresponding to 35% yield for 3
and 29% yield for 2). This mixture of 3 and 2 was recrystallized from
hot toluene (twice) and then from hot CHCl3ꢀhexane (twice) to give
analytical pure 3 as a red solid (140 mg): mp 256 °C; 1H NMR
(CDCl3) δ 9.74 (s, 2H), 8.95 (d, J = 9.0 Hz, 2H), 8.16 (d, J = 8.5 Hz,
2H), 7.59 (dd, J = 9.0 and 6.6 Hz, 2H), 7.50 (dd, J = 8.5 and 6.6 Hz,
2H), 2.49 (s, 6H); 13C NMR (CDCl3) δ 134.1, 132.4, 132.2, 132.0,
130.0, 128.2, 127.0, 126.8, 125.4, 20.4. Anal. Calcd for C20H16S2: C,
74.96; H, 5.03. Found: C, 74.87; H, 5.22.
X-ray Data Collection and Crystal Structure Determina-
tion of 2 and 3. The data were measured using a CCD area detector,
using MoꢀKR graphite monochromated radiation (λ = 0.71073 Å).
The structure was solved by direct methods using the program SHELXS-
97.23 The refinement and all further calculations were carried out using
SHELXL-97.23 The H-atoms were included in calculated positions and
treated as riding atoms using the SHELXL default parameters. The non-
H atoms were refined anisotropically, using weighted full-matrix least-
squares on F2. Crystal data and structure refinement are listed in Tables
S1 and S2 (Supporting Information).17 The X-ray experimental details
are described in the form of a CIF.17
(4) Klauk, H.; Halik, M.; Zschieschang, U.; Schmid, G.; Radlik, W.;
Weber, W. J. Appl. Phys. 2002, 92, 5259–5263.
(5) (a) Desiraju, G. R.; Gavezzotti, A. Acta Crystallogr. Sect. B 1989,
45, 473–482.(b) Desiraju, G. R. Crystal Engineering: The Design of
Organic Solids; Elsevier: Amsterdam, 1989; Chapter 4. (c) Cornil, J.;
Calbert, J. P.; Brꢀedas, J. L. J. Am. Chem. Soc. 2001, 123, 1250–1251. (d)
Fritz, S. E.; Martin, S. M.; Frisbie, C. D.; Ward, M. D.; Toney, M. F. J. Am.
Chem. Soc. 2004, 126, 4084–4085.
(6) (a) Brꢀedas, J.-L.; Calbert, J. P.; da Silva Filho, D. A.; Cornil., J.
Proc. Natl. Acad. Sci. U.S.A. 2002, 99, 5804–5809. (b) Haddon, R. C.;
Chi, X.; Itkis, M. E.; Anthony, J. E.; Eaton, D. L.; Siegrist, T.; Mattheus,
C. C.; Palstra, T. T. M. J. Phys. Chem. B 2002, 106, 8288–8292.
(c) Curtis, M. D.; Cao, J.; Kampf, J. W. J. Am. Chem. Soc. 2004,
126, 4318–4328. (d) Brꢀedas, J.-L.; Beljonne, D.; Coropceanu, V.; Cornil,
J. Chem. Rev. 2004, 104, 4971–5003. (e) Deng, W.-Q.; Goddard, W. A.,
III. J. Phys. Chem. B 2004, 108, 8614–8621. (f) da Silva Filho, D. A.; Kim,
E.-G.; Brꢀedas, J.-L. Adv. Mater. 2005, 17, 1072–1076.
(7) Silvestri, F.; Marrocchi, A.; Seri, M.; Kim, C.; Marks, T. J.;
Facchetti, A.; Taticchi, A. J. Am. Chem. Soc. 2010, 132, 6108–6123.
(8) (a) Anthony, J. E.; Brooks, J. S.; Eaton, D. L.; Parkin, S. R. J. Am.
Chem. Soc. 2001, 123, 9482–9483. (b) Anthony, J. E.; Eaton, D. L.;
Parkin, S. R. Org. Lett. 2002, 4, 15–18. (c) Payne, M. M.; Parkin, S. R.;
Anthony, J. E.; Kuo, C.-C.; Jackson, T. N. J. Am. Chem. Soc. 2005,
127, 4986–4987. (d) Subramanian, S.; Park, S. K.; Parkin, S. R.;
Podzorov, V.; Jackson, T. N.; Anthony, J. E. J. Am. Chem. Soc. 2008,
130, 2706–2707.
(9) (a) Kobayashi, K.; Masu, H.; Shuto, A.; Yamaguchi, K. Chem. Mater.
2005, 17, 6666–6673. (b) Sasaki, H.; Wakayama, Y.; Chikyow, T.; Barrena,
E.; Dosch, H.; Kobayashi, K. Appl. Phys. Lett. 2006, 88, 081907–1ꢀ3.
(10) (a) Kobayashi, K.; Shimaoka, R.; Kawahata, M.; Yamanaka, M.;
Yamaguchi, K. Org. Lett. 2006, 8, 2385–2388. (b) Wakayama, Y.;
Hayakawa, R.; Chikyow, T.; Machida, S.; Nakayama, T.; Egger, S.; de
Oteyza, D. G.; Dosch, H.; Kobayashi, K. Nano Lett. 2008, 8, 3273–3277.
(11) For SꢀS interactions for molecular ordering, see also: (a)
Werz, D. B.; Gleiter, R.; Rominger, F. J. Am. Chem. Soc. 2002,
124, 10638–10639. (b) Gleiter, R.; Werz, D. B. Chem. Lett. 2005,
34, 126–131. (c) Bleiholder, C.; Werz, D. B.; K€oppel, H.; Gleiter, R.
J. Am. Chem. Soc. 2006, 128, 2666–2674.
(12) (a) Kaur, I.; Jia, W.; Kopreski, R. P.; Selvarasah, S.; Dokmeci,
M. R.; Pramanik, C.; McGruer, N. E.; Miller, G. P. J. Am. Chem. Soc.
2008, 130, 16274–16286. (b) Kaur, I.; Stein, N. N.; Kopreski, R. P.;
Miller, G. P. J. Am. Chem. Soc. 2009, 131, 3424–3425. (c) Kaur, I.;
Jazdzyk, M.; Stein, N. N.; Prusevich, P.; Miller, G. P. J. Am. Chem. Soc.
2010, 132, 1261–1263.
(13) For selected examples of sulfur-containing heretoacenes, see ref
8c,8d and: (a) Laquindanum, J. G.; Katz, H. E.; Lovinger, A. J. J. Am.
Chem. Soc. 1998, 120, 664–672. (b) Li, X.-C.; Sirringhaus, H.; Garnier,
F.; Holmes, A. B.; Moratti, S. C.; Feeder, N.; Clegg, W.; Teat, S. J.;
Friend, R. H. J. Am. Chem. Soc. 1998, 120, 2206–2207. (c) Mas-Torrent,
M.; Durkut, M.; Hadley, P.; Ribas, X.; Rovira, C. J. Am. Chem. Soc. 2004,
126, 984–985. (d) Takimiya, K.; Kunugi, Y.; Konda, Y.; Niihara, N.;
Otsubo, T. J. Am. Chem. Soc. 2004, 126, 5084–5085. (e) Meng, H.; Sun,
F.; Goldfinger, M. B.; Jaycox, G. D.; Li, Z.; Marshall, W. J.; Blackman,
G. S. J. Am. Chem. Soc. 2005, 127, 2406–2407. (f) Xiao, K.; Liu, Y.; Qi, T.;
’ ASSOCIATED CONTENT
S
Supporting Information. Additional data and X-ray crys-
b
tallographic data (CIF). This material is available free of charge
’ AUTHOR INFORMATION
Corresponding Author
*E-mail: skkobay@ipc.shizuoka.ac.jp.
’ ACKNOWLEDGMENT
This work was supported in part by PRESTO, JST, and the Asahi
Glass Foundation. We thank Dr. Kengo Suzuki (Hamamatsu
Photonics K.K.) and Mr. Yutaka Fujiwara (Shizuoka University)
for measurements of fluorescence quantum yields and lifetimes
of 1ꢀ3.
5024
dx.doi.org/10.1021/jo200696a |J. Org. Chem. 2011, 76, 5018–5025