S. Mukherjee et al. / Tetrahedron Letters 44 (2003) 7187–7190
7189
It is important to note that the conditions of the ROM
polymerization event ultimately affect the properties of
the resulting polymers. The concentration of the reac-
tion mixture during the ROM polymerization was criti-
cal, with concentration between 0.1–0.2 M being
sufficient. If the reaction mixture was too concentrated,
gel formation was observed in some cases, and traces of
Mitsunobu by-product were observed in the final prod-
ucts, presumably due to inclusion during the polymer-
ization process. Also, the length of the polymer plays
an important role. Generally, we found that a better
yield of polymer was obtained when using 0.5 mol% of
catalyst (Gaussian distribution of ꢀ200-mers) when
compared to 1.0–3.0 mol% (Gaussian distribution of
Macpherson, Director of the Plasma Analytical Labo-
ratory at the University of Kansas, for carrying out the
ICP-MS measurement.
References
1. (a)
A Practical Guide to Combinatorial Chemistry;
Czarnik, A. W.; DeWitt, S. H., Eds. American Chemical
Society: Washington, DC, 1997; (b) Bunin, B. A. The
Combinatorial Index; Academic Press: New York, 1998;
(c) Combinatorial Chemistry: A Practical Approach; Fen-
niri, H., Ed.; The Practical Approach Series 233: Oxford
University Press: New York, 2000.
ꢀ100- to 33-mers), presumably because of the ease of
filtration of the large particle size in the former cases.
When catalyst loads of less than 0.5 mol% (Gaussian
distribution of >200-mers) were used, the resulting
polymer was insoluble in most common organic sol-
vents and difficult to characterize by conventional
methods ( H NMR). Interestingly, even when the poly-
mer was not soluble in THF, hydrazinolysis could be
achieved.
2. Flynn, D. L. Med. Res. Rev. 1999, 19, 408–431.
3. Guillier, F.; Orain, D.; Bradley, M. Chem. Rev. 2000,
100, 2091–2157.
4. Shuttleworth, S. J.; Allin, S. M.; Sharma, P. K. Synthesis
1997, 1217–1239.
1
5. (a) Flynn, D. L.; Crich, J. Z.; Devraj, R. V.; Hockerman,
S. L.; Parlow, J. J.; South, M. S.; Woodard, S. J. Am.
Chem. Soc. 1997, 119, 4874–4881; (b) Booth, R. J.;
Hodges, J. C. J. Am. Chem. Soc. 1997, 119, 4882–4886.
Reviews: (c) Booth, R. J.; Hodges, J. C. Acc. Chem. Res.
1999, 32, 18–26; (d) Eames, J.; Watkinson, M. Eur. J.
Org. Chem. 2001, 1213–1224.
6. (a) Curran, D. P.; Hadida, S. J. Am. Chem. Soc. 1996,
118, 2531–2532; (b) Flynn, D. L.; Devraj, R. V.; Naing,
W.; Parlow, J. J.; Weidner, J. J.; Yang, S. Med. Chem.
Res. 1998, 8, 219–243; (c) Parlow, J. J.; Naing, W.; South,
M. S.; Flynn, D. L. Tetrahedron Lett. 1997, 38, 7959–
7962; (d) Starkey, G. W.; Parlow, J. J.; Flynn, D. L.
Bioorg. Med. Chem. Lett. 1998, 8, 2385–2390; (e) Luo, Z.;
Zhang, Q.; Oderaotoshi, Y.; Curran, D. P. Science 2001,
It is noteworthy that ROMP could be carried out in
presence of olefin containing substrates 4b and 4d with-
out any observed cross-metathesis occurring between
the substrate and polymer backbone. Furthermore,
when the norbornenyl system (carbon bridgehead) was
used instead of oxynorbornenyl-tagged monomer,
traces of polymer were found in the final product.
Further research is underway in our laboratory to
extend synthetic utility of this work and also explore
various properties of the polymer with ultimate goal of
synthesizing designer polymers with tunable properties.
291, 1766–1769; (f) Zhang, W.; Luo, Z.; Chen, C. H.-T.;
In conclusion, we have developed a capture-ROMP-
release strategy for the synthesis of amines and hydra-
Curran, D. P. J. Am. Chem. Soc. 2002, 124, 10443–10450;
(g) Bosanac, T.; Yang, J.; Wilcox, C. S. Angew. Chem.,
Int. Ed. 2001, 40, 1875–1879; (h) Bosanac, T.; Wilcox, C.
S. J. Am. Chem. Soc. 2002, 124, 4194–4195; (i) Ley, S. V.;
Massi, A.; Rodriguez, F.; Harwell, D. C.; Lewthwaite, R.
A.; Pritchard, M. C.; Reid, A. M. Angew. Chem., Int. Ed.
2001, 40, 1053–1055.
zine
derivatives
eliminating
the
need
for
chromatographic purification. This method is high
yielding and generates oligomers with tunable proper-
ties. The combined use of Grubbs catalyst-mediated
ROM polymerization and norbornenyl-tagging of reac-
tants offers a powerful and general platform for solu-
tion-phase chemical library synthesis. Noteworthy
features of this methodology include in situ polymeriza-
tion after solution-phase reactions, high-load levels of
the resulting oligomers, phase switching operations, and
high tolerance to a wide variety of organic functional
groups.
7. (a) Dickerson, T. J.; Reed, N. N.; Janda, K. D. Chem.
Rev. 2002, 102, 3325–3343; (b) Gravert, D. J.; Janda, K.
D. Chem. Rev. 1997, 97, 489–509; (c) Toy, P. H.; Janda,
K. D. Acc. Chem. Res. 2000, 33, 546–554; (d) Haag, R.
Chem. Eur. J. 2001, 7, 327–335; (e) Haag, R.; Sunder, A.;
Hebel, A.; Roller, S. J. Comb. Chem. 2002, 4, 112–119.
8. Barrett, A. G. M.; Hopkins, B. T.; Kobberling, J. Chem.
Rev. 2002 102, 3301–3324. ROMpt Synthesis
9
. (a) Bolm, C.; Dinter, C. L.; Seger, A.; H o¨ cker, H.;
Brozio, J. J. Org. Chem. 1999, 64, 5730–5731; (b)
Enholm, E. J.; Gallagher, M. E. Org. Lett. 2001, 3,
Acknowledgements
3397–3399; (c) Enholm, E. J.; Cottone, J. S. Org. Lett.
This investigation was generously supported by funds
by the National Science Foundation (NSF Career
2001, 3, 3959–3962; (d) Harned, A. M.; Mukherjee, S.;
Flynn, D. L.; Hanson, P. R. Org. Lett. 2003, 5, 15–18.
10. (a) Moore, J. D.; Herpel, R. H.; Lichtsinn, J. R.; Flynn,
D. L.; Hanson, P. R. Org. Lett. 2003, 5, 105–107; (b)
Moore, J. D.; Harned, A. M.; Henle, J.; Flynn, D. L.;
Hanson, P. R. Org. Lett. 2002, 4, 1847–1849.
9
984926). The authors thank Neogenesis Pharmaceuti-
cals, Inc. and the University of Kansas Research Devel-
opment Fund for providing generous postdoctoral
support (S.M.) and Materia, Inc. for helpful discus-
sions. The authors also thank Dr. David Van der Velde
for NMR assistance and Professor Gwendolyn L.
11. Flynn, D. L.; Hanson, P. R.; Berk, S. C.; Makara, G. M.
Curr. Opin. Drug. Discov. Devel. 2002, 5, 571–579.