Catalysts with Magnesium-Based Supports
1759
¨
3. Schafer T, Borchert TW, Nielsen VS, Skagerlind P, Gibson K,
Wenger K, Hatzack F, Nilsson LB, Salmon S, Pedersen S, Heldt-
Hansen HP, Poulsen PB, Lund H, Oxenbøll KM, Wu GF,
Pedersen HH, Xu H (2007) Adv Biochem Eng Biotechnol 105:59
4. Du Z, Ma J, Wang F, Liu J, Xu J (2011) Green Chem 13:554
precipitated on the surface of the catalyst after cooling
down the reaction mixture) and re-used (Fig. 8). As seen
from the results, the spinel-supported ruthenium catalyst
preserved its initial activity clearly making this stable
heterogeneous Ru(OH)x oxidation catalyst interesting for
further investigations.
´
5. Navarro OC, Canos AC, Chornet SI (2009) Top Catal 52:34
6. Ma J, Du Z, Xu J, Chu Q, Pang Y (2011) ChemSusChem 4:51
´
7. Grabowski G, Lewkowski J, Skowronski R (1991) Electrochim
Acta 36:1995
8. Lilga MA, Hallen RT, Hu J, White JF, Gray MJ (2008) US Patent
20080103318, 1 may 2008
9. Casanova O, Iborra S, Corma A (2009) J Catal 265:109
10. Gorbanev YY, Klitgaard SK, Woodley JM, Christensen CH,
Riisager A (2009) ChemSusChem 2:672
11. Taarning E, Nielsen IS, Egeblad K, Madsen R, Christensen CH
(2008) ChemSusChem 1:75
12. Werpy T, Petersen G (2004) Top Value Added Chem Biomass
13. Bozell JJ, Petersen GR (2010) Green Chem 12:539
14. Boisen A, Christiansen TB, Fu W, Gorbanev YY, Hansen TS,
4 Conclusions
Supported catalysts with catalytically active Ru(OH)x
species deposited on the three magnesium-based supports
HT, MgO and spinel (MgAl2O4), have been applied for
aerobic oxidation of HMF to FDA in water without added
base. All three catalysts were found to effectively catalyze
the oxidation of HMF. However, both HT and MgO sup-
ports dissolved partly under the reaction conditions liber-
ating significantly amounts of Mg2? ions, thus making the
mixtures alkaline. This resulted in formation of Mg-FDA
salts stabilized against further degradation. The spinel
support, on the other hand, remained stable under the
reaction conditions which allowed performing the oxida-
tion reaction under base free conditions.
˚
Jensen JS, Klitgaard SK, Pedersen S, Riisager A, Stahlberg T,
Woodley JM (2009) Chem Eng Res Des 87:1318
15. Dijksman A, Arends IWCE, Sheldon RA (2001) Platinum Metals
Rev 45:15
16. Chang S, Lee M, Ko S, Lee PH (2002) Synth Commun 32:1279
17. Vanover E, Huang Y, Xu L, Newcomb M, Zhang R (2010) Org
Lett 12:2246
18. Zhai Y, Liu H, Liu B, Liu Y, Xiao J, Bai W (2007) Trans Met
Chem 32:570
19. Lei ZQ, Kang QX, Bai XZ, Yang ZW, Zhang QH (2005) Chin
Chem Lett 16:846
20. Farmer V, Welton T (2002) Green Chem 4:97
21. Vocanson F, Guo YP, Namy IL, Kagan HB (1998) Synth Com-
mun 28:2577
22. Ji H, Mizugaki T, Ebitani K, Kaneda K (2002) Tetrahedron Lett
43:7179
23. Musawir M, Davey PN, Kelly G, Kozhevnikov IV (2003) Chem
Commun 1414
24. Venkatesan S, Kumar AS, Lee J-F, Chan T-S, Zen J-M (2009)
Chem Commun 1912
25. Yamaguchi K, Mori K, Mizugaki T, Ebitani K, Kaneda K (2000)
J Am Chem Soc 122:7144
26. Mori K, Yamaguchi K, Mizugaki T, Ebitani K, Kaneda K (2001)
Chem Commun 461
27. Yamaguchi K, Mizuno N (2003) Chem Eur J 9:4353
28. Kotani M, Koike T, Yamaguchi K, Mizuno N (2006) Green
Chem 8:735
29. Kim JW, Yamaguchi K, Mizuno N (2008) Angew Chem Int Ed
47:9249
30. Mizuno N, Yamaguchi K (2008) Catal Today 132:18
31. Yamaguchi K, Mizuno N (2010) Synlett 16:2365
32. Bavykin DV, Lapkin AA, Kolaczkowski ST, Plucinski PK (2005)
Appl Catal A 288:175
33. Kaneda K, Yamashita T, Matsushita T, Ebitani K (1998) J Org
Chem 63:1750
34. Matsushita T, Ebitani K, Kaneda K (1999) Chem Commun 265
35. Opre Z, Grunwaldt J-D, Maciejewski M, Ferri D, Mallat T,
Baiker A (2005) J Catal 230:406
The reported data suggests that the reaction pathway for
aerobic oxidation of HMF to FDA with the Ru(OH)x
supported catalysts proceed via relatively slow initial
competitive oxidation to DFF and HMFCA (Scheme 3).
The subsequent oxidations to form the product are fast
since no other intermediates (e.g. 5-formylfuran-2-car-
boxylic acid) were observed.
Importantly, only very low amounts (\0.02%) of the
ruthenium metal inventory was found to dissolve from the
catalysts (irrespectively of the support dissolution) under
the applied reaction conditions. Combined with the
observation that Ru(OH)x/MgAl2O4 preserved its activity
upon reuse, makes this and analogous catalyst systems
based on stable supports attractive alternatives to present
aerobic HMF oxidation catalysts based on metal nanopar-
ticles (e.g. gold catalysts), which often is less active upon
reuse due to particle sintering [10, 44].
Acknowledgments The authors thank Bodil Holten (Centre for
Catalysis and Sustainable Chemistry, DTU Chemistry) for experi-
mental assistance. The work was supported by The Danish National
Advanced Technology Foundation and Novozymes A/S.
36. Opre Z, Grunwaldt J-D, Mallat T, Baiker A (2005) J Mol Catal A
242:224
37. Gorbanev YY, Kegnæs S, Riisager A (2011) Top Catal. doi:
References
1. Rinaldi R, Schu¨th F (2009) Energy Environ Sci 2:610
2. Park J, Seyama T, Shiroma R, Ike M, Srichuwong S, Nagata K,
Arai Sanoh Y, Kondo M, Tokuyasu K (2009) Biosci Biotechnol
Biochem 73:1072
38. Marsden C, Taarning E, Hansen D, Johansen L, Klitgaard SK,
Egeblad K, Christensen CH (2008) Green Chem 10:168
39. Lewkowski J (2001) ARKIVOC (i) 17–54
40. Casanova O, Iborra S, Corma A (2009) ChemSusChem 2:1138
123