3 K. T. Hopkins, W. D. Wilson, B. C. Bendan, D. R. McCurdy, J. E. Hall,
R. R. Tidwell, A. Kumar, M. Bajic and D. W. Boykin, J. Med. Chem.,
1998, 41, 3872.
4 M. Del Poeta, W. A. Schell, C. C. Dykstra, S. Jones, R. R. Tidwell,
A. Czarny, M. Bajic, A. Kumar, D. Boykin and J. R. Perfect, Antimicrob.
Agents Chemother., 1998, 42, 2495.
5 D. T. Richter and T. D. Lash, Tetrahedron Lett., 1999, 40, 6735.
6 O. W. Howarth, G. G. Morgan, V. McKee and J. Nelson, J. Chem. Soc.,
Dalton Trans, 1999, 12, 2097.
7 L. Cottier, G. Descotes, J. Lewkowski and R. Skowronski, Pol. J. Chem.,
1994, 68, 693.
2,5-DFF with 99% yield and 100% selectivity. In addition,
a combination of Fe3O4-SBA-SO3H and K-OMS-2 catalysts
successfully catalyzed direct synthesis of 2,5-DFF from fructose
via acid-catalyzed dehydration and successive aerobic oxidation
in a one-pot reaction. Stepwise addition of catalysts gave
2,5-DFF in 80% yield. These two heterogeneous catalysts could
be easily separated by using a magnet and re-used for further
reaction (Fig. 3).
8 A. S. Amarasekara, D. Green and E. McMillan, Catal. Commun., 2008,
9, 286–288.
Acknowledgements
9 L. Cottier, G. Descotes, J. Lewkowski, R. Skowronski and E. Viollet,
J. Heterocycl Chem., 1995, 32, 927.
10 G. A. Halliday, R. J. Young and V. V. Grushin, Org. Lett., 2003, 5,
2003.
11 C. Carlini, P. Patrono, A. M. R. Galletti, G. Sbrana and V. Zima, Appl.
Catal. B, 2005, 289, 197.
12 O. Casanova, A. Corma and S. Iborra, Top. Catal., 2009, 52, 304.
13 J. P. Ma, Z. T. Du, J. Xu, Q. H. Chu and Y. Pang, ChemSusChem, 2011,
4, 51.
This work was financially supported by the National Basic
Research Program of China (973 program, No. 2012CB215305,
2012CB215306), the National Natural Science Foundation of
China (21172209) and Chinese Academy of Science (KJCX2-
EW-J02).
14 W. Partenheimer and V. V. Grushin, Adv. Synth. Catal., 2001, 343, 102.
15 H. J. Yoon, J. W. Choi, H. S. Jang, J. K. Cho, J. W. Byun, W. J. Chung,
S. M. Lee and Y. S. Lee, Synlett, 2011, 165.
16 A. Takagaki, M. Takahashi, S. Nishimura and K. Ebitani, ACS Catal.,
2011, 1, 1562.
17 X. Xiang, L. H. Yu, Y. Yang, B. Guo, D. M. Tong and C. W. Hu, Catal.
Lett., 2011, 141, 735.
18 V. D. Makwana, Y. C. Son, A. R. Howell and S. L. Suib, J. Catal., 2002,
210, 46.
Notes and references
1 A. Corma, S. Iborra and A. Velty, Chem. Rev., 2007, 107, 2411;
J. N. Chheda, G. W. Huber and J. A. Dumesic, Angew. Chem., 2007, 119,
7298, (Angew. Chem., Int. Ed., 2007, 46, 7164); B. Kamm, Angew.
Chem., 2007, 119, 5146, (Angew. Chem., Int. Ed., 2007, 46, 5146);
T. Stahlberg, W. Fu, J. M. Woodley and A. Riisager, ChemSusChem,
2011, 4, 451; Y. T. Cheng, J. Jae, J. Shi, W. Fan and G. W. Huber, Angew.
Chem., Int. Ed., 2012, 51, 1387.
2 Y. Roman-Leshkow, J. N. Chheda and J. A. Dumesic, Science, 2006,
312, 1933; H. B. Zhao, J. E. Holladay, H. Brown and Z. C. Zhang,
Science, 2007, 316, 1597; J. B. Binder and R. T. Raines, J. Am. Chem.
Soc., 2009, 131, 1979; G. Yong, Y. Zhang and J. Y. Ying, Angew. Chem.,
Int. Ed., 2008, 47, 9345; X. L. Tong and Y. D. Li, ChemSusChem, 2010,
3, 350; S. Q. Hu, Z. F. Zhang, Y. X. Zhou and B. X. Han, Green Chem.,
2009, 11, 1746.
19 G. Qiu, H. Huang, S. Dharmarathna, E. Benbow, L. Stafford and
S. L. Suib, Chem. Mater., 2011, 23, 3892.
20 Y. C. Son, V. D. Makwana, A. R. Howell and S. L. Suib, Angew. Chem.,
Int. Ed., 2001, 40, 4280.
21 D. M. Lai, L. Deng, J. J B. Liao, Q. X. Guo and Y. Fu, ChemSusChem,
2011, 4, 55; D. M. Lai, L. Deng, Q. X. Guo and Y. Fu, Energy Environ.
Sci., 2011, 4, 3552.
This journal is © The Royal Society of Chemistry 2012
Green Chem., 2012, 14, 2986–2989 | 2989