Paper
Green Chemistry
However, limited HMFCA and by-product DFF remained in the
solvent. The toluene solvent could be readily purified by evap-
oration under reduced pressure due to the large boiling points
between toluene and the furan compounds. Thus, the solvent
can be reused. The precipitated HMFCA was then easily puri-
fied by washing several times with ethyl acetate. The resulting
HMFCA was characterized by 1H NMR and 13C NMR. The NMR
data were recorded as follows: 1H NMR (400 MHz, CDCl3)
δ (ppm): 10.1 (s, 1H, –COOH), 7.23–7.22 (d, 1H, J = 4.0 Hz,
furan ring), 6.59–6.58 (d, 1H, J = 4.0 Hz, furan ring), 4.65
(s, 2H, –O–CH2-furan ring), 1.60 (s, 1H, –OH). 13C NMR
(100 MHz, CDCl3) δ (ppm): 168.5, 157.2, 152.8, 121.8, 111.8,
64.6.
RSC Adv., 2013, 3, 12313; (c) H. Zohrer and F. Vogel,
Biomass Bioenergy, 2013, 53, 138.
4 (a) A. Corma, S. Iborra and A. Velty, Chem. Rev., 2007, 107,
2411; (b) H. Kobayashi, T. Komanoya, S. K. Guha, K. Hara
and A. Fukuoka, Appl. Catal., A, 2011, 409, 13;
(c) M. Gassner and F. Marechal, Energy Fuels, 2013, 27,
2107.
5 (a) Z. H. Zhang and Z. K. Zhao, Bioresour. Technol., 2010,
101, 1111; (b) L. Hu, Y. Sun, L. Lin and S. J. Liu, Biomass
Bioenergy, 2012, 47, 289; (c) M. Krystof, M. Perez-Sanchez
and P. D. de Maria, ChemSusChem, 2013, 6, 630.
6 (a) A. A. Rosatella, S. P. Simeonov, R. F. M. Frade and
C. A. M. Afonso, Green Chem., 2011, 13, 754; (b) R. J. van
Putten, J. C. van der Waal, E. de Jong, C. B. Rasrendra,
H. J. Heeres and J. G. de Vries, Chem. Rev., 2013, 113, 1499.
7 (a) Y. R. Leshkov, J. N. Chheda and J. A. Dumesic, Science,
2006, 312, 1933; (b) J. B. Binder and R. T. Raines, J. Am.
Chem. Soc., 2009, 131, 1979; (c) Z. H. Zhang, Q. Wang,
H. B. Xie, W. J. Liu and Z. K. Zhao, ChemSusChem, 2011, 4,
131; (d) B. Liu, Z. H. Zhang and Z. K. Zhao, Chem. Eng. J.,
2013, 215–216, 517.
8 (a) C. Moreau, M. N. Belgacem and A. Gandini, Top. Catal.,
2004, 27, 11; (b) A. Gandini, Green Chem., 2011, 13, 1061;
(c) T. Pasini, M. Piccinini, M. Blosi, R. Bonelli, S. Albonetti,
N. Dimitratos, J. A. Lopez-Sanchez, M. Sankar, Q. He,
C. J. Kiely, G. J. Hutchings and F. Cavani, Green Chem.,
2011, 13, 2091; (d) M. Krystof, M. Perez-Sanchez and
P. D. de Maria, ChemSusChem, 2013, 6, 626.
Conclusion
In this study, a molybdenum(VI) complex was successfully
immobilized on K-10 clay by the cation exchange method. The
heterogeneous K-10 clay-Mo catalyst showed high catalyst
activity and selectivity in the oxidation of HMF into HMFCA
with molecular oxygen. Under optimal conditions, a HMF con-
version of 100% and HMFCA yield of 86.9% were obtained
after 3 h with the flushing of oxygen at 110 °C. The activity of
the K-10 clay-Mo catalyst is robust, as the oxidation reaction
could occur smoothly in air. More importantly, the catalyst
was stable during the reaction, and could be reused several
times without loss of its activity. These methods represent an
interesting and highly atom-efficient alternative for the oxi-
dation of aldehyde groups into carboxylic groups, as oxygen is
cheap, readily available, and an oxidant that produces water as
the only by-product.
9 (a) T. Pasini, M. Piccinini, M. Blosi, R. Bonelli, S. Albonetti,
N. Dimitratos, J. A. Lopez-Sanchez, M. Sankar, Q. He,
C. J. Kiely, G. J. Hutchings and F. Cavani, Green Chem.,
2011, 13, 2091; (b) S. E. Davis, L. R. Houk, E. C. Tamargo,
A. K. Datye and R. J. Davis, Catal. Today, 2011, 160, 55;
(c) O. Casanova, S. Iborra and A. Corma, ChemSusChem,
2009, 2, 1138; (d) B. Saha, S. Dutta and M. M. Abu-Omar,
Catal. Sci. Technol., 2012, 2, 79; (e) B. Saha, D. Gupta,
M. M. Abu-Omar, A. Modak and A. Bhaumik, J. Catal.,
2013, 299, 316.
Acknowledgements
The project was supported by National Natural Science Foun-
dation of China (No. 21203252, 21373275), and the Chenguang
Youth Science and Technology Project of Wuhan City (No.
2014070404010212).
10 H. Hirai, J. Macromol. Sci., Chem., 1984, 21, 1165.
11 M. Munekata and G. Tamura, Agric. Biol. Chem., 1981, 45,
2149.
12 A. C. Braisted, J. D. Oslob, W. L. Delano, J. Hyde,
R. S. McDowell, N. Waal, C. Yu, M. R. Arkin and
B. C. Raimundo, J. Am. Chem. Soc., 2003, 125, 3714.
References
1 (a) A. J. Ragauskas, C. K. Williams, B. H. Davidson,
G. Britovsek, J. Cairney, W. J. Frederick, J. P. Hallett, 13 K. Mitsukura, Y. Sato, T. Yoshida and T. Nagasawa, Biotech-
D. J. Leak, C. L. Liotta, J. R. Mielenz, R. Murphy, nol. Lett., 2004, 26, 1643.
R. Templet and T. Tschaplinski, Science, 2006, 311, 484; 14 E.-S. Kang, D. W. Chae, B. Kim and Y. G. Kim, J. Ind. Eng.
(b) G. Stephanopoulos, Science, 2007, 315, 801. Chem., 2012, 18, 174.
2 (a) B. Liu, Z. H. Zhang, K. C. Huang and Z. F. Fang, Fuel, 15 (a) S. E. Davisa, L. R. Houk, E. C. Tamargo, A. K. Datye and
2013, 113, 625; (b) A. Szabolcs, M. Molnar, G. Dibo and
L. T. Mika, Green Chem., 2013, 15, 439; (c) J. Ahrenfeldt,
H. Egsgaard, W. Stelte, T. Thomsen and U. B. Henriksen,
Fuel, 2013, 112, 662.
3 (a) A. M. Balu, V. Budarin, P. S. Shuttleworth,
L. A. Pfaltzgraff, K. Waldron, R. Luque and J. H. Clark,
ChemSusChem, 2012, 5, 1694; (b) B. Liu and Z. H. Zhang,
R. J. Davis, Catal. Today, 2011, 160, 55; (b) E. Taarning,
I. S. Nielsen, K. Egeblad, R. Madsen and C. H. Christensen,
ChemSusChem, 2008, 1, 75; (c) O. Casanova, S. Iborra and
A. Corma, ChemSusChem, 2009, 2, 1138; (d) Y. Y. Gorbanev,
S. K. Klitgaard, J. M. Woodley, C. H. Christensen and
A. Riisager, ChemSusChem, 2009, 2, 672; (e) S. E. Davis,
A. D. Benavidez, R. W. Gosselink, J. H. Bitter, K. P. de Jong,
Green Chem.
This journal is © The Royal Society of Chemistry 2014