1774
A. Corma et al.
CLUSTER
then concentrated under vacuum. The residue was washed several
times with Et2O, dried and filtered to afford the respective complex-
es in almost quantitative yields.
(7) (a) Carrettin, S.; Guzmán, J.; Corma, A. Angew. Chem. Int.
Ed. 2005, 44, 2242. (b) Hashmi, A. S. K.; Schwarz, L.;
Choi, J.-H.; Frost, T. M. Angew. Chem. Int. Ed. 2000, 39,
2285.
2Pd-(MCM-41)
(8) (a) Hashmi, A. S. K. Angew. Chem. Int. Ed. 2005, 44, 6990.
(b) Arcadi, A.; Di Giuseppe, S. Curr. Org. Chem. 2004, 8,
795. (c) Hoffmann-Röder, A.; Krause, N. Org. Biomol.
Chem. 2005, 3, 387. (d) Hashmi, A. S. K. Gold Bull. 2003,
36, 3. (e) Hashmi, A. S. K. Gold Bull. 2004, 37, 51.
(f) González-Arellano, C.; Corma, A.; Iglesias, M.; Sánchez,
F. Chem. Commun. 2005, 3451. (g) Hashmi, A. S. K.;
Salatte, R.; Frey, W. Chem. Eur. J. 2006, 12, 6991.
(h) Hashmi, A. S. K.; Weyrauch, J. P.; Rudolph, M.;
Kurpejovic, E. Angew. Chem. Int. Ed. 2004, 43, 6545.
(9) (a) Metal-Catalyzed Cross-Coupling Reactions; Diederich,
F.; Stang, P. G., Eds.; Wiley-VCH: Weinheim, 1997.
(b) Transition Metals for Organic Synthesis, Building Blocks
and Fine Chemicals; Beller, M., Ed.; Wiley-VCH:
Weinheim, 2004.
(10) (a) Kresge, C. T.; Leonowicz, M. E.; Roth, W. J.; Vartuli, J.
C.; Beck, J. S. Nature (London) 1992, 359, 710. (b)Beck, J.
S.; Roth, W. J.; Leonowicz, M. E.; Kresge, C. T.; Schmitt,
K. D.; Chu, C. T.-W.; Olson, K. H.; Sheppard, E.; McCullen,
S. B.; Higgins, J. B.; Schlenk, J. L. J. Am. Chem. Soc. 1992,
114, 10834.
(11) (a) Corma, A.; Fornés, V.; Pergher, S. B. Nature (London)
1998, 396, 353. (b) Corma, A.; Fornés, V.; Martínez-
Triguero, J.; Pergher, S. B. J. Catal. 1999, 186, 57.
(c) Corma, A.; Fornés, V.; Guil, J. M.; Pergher, S. B.;
Maesen, Th. L. M.; Buglass, J. G. Microporous Mesoporous
Mater. 2000, 38, 301.
Anal. Found (%): C, 10.4; H, 2.9; N, 0.5; Pd, 0.6 (0.19 mmol/g). 13
C
NMR (solid): d = 175.61 (CPd), 137.26 (CaromN), 133.26
(CaromCH3o-), 129.28 (CaromCH3p-), 128.84 (CHarom), 126.52 (=CHa-
liph), 123.16 (=CHarom), 58.27 (OCH2CH3), 55.31 (CH2N), 30.02
(CH2), 23.17 (CH3o-), 19.61 (OCH2CH3), 17.82 (CH3p-), 16.62
(CH2Si) ppm. IR (KBr): n = 1609 (C=N), 1481 (=CN), 1080 cm–1.
UV/Vis (l): 341, 417 nm.
2Pd-(ITQ-2)
Anal. Found (%): C, 9.7; H, 2.4; N, 0.6; Pd, 0.6 (0.19 mmol/g). 13
C
NMR (solid): d = 175.61 (CPd), 139.71 (CaromN), 135.57 (CaromCH3
o-), 130.93 (CaromCH3p-), 130.44 (CHarom), 122.91 (=CHaliph),
122.16 (=CHarom), 60.48 (OCH2CH3), 59.83 (CH2N), 32.32 (CH2),
24.58 (CH3o-), 19.91 (OCH2CH3), 18.04 (CH3p-), 17.14 (CH2Si)
ppm. IR (KBr): n = 1608 (C=N), 1482 (=CN), 1085(CN) cm–1. UV/
Vis (l): 342, 418 nm.
2Pd-(Sil)
Anal. Found (%): C, 9.5; H, 2.7; N, 0.7; Pd, 0.7 (0.21 mmol/g). 13
C
NMR (solid): d = 175.52 (CPd), 139.69 (CaromN), 135.38
(CaromCH3o-), 131.23 (CaromCH3p-), 130.90 (CHarom), 123.65 (=CHa-
liph), 122.87 (=CHarom), 61.02 (OCH2CH3), 58.33 (CH2N), 31.87
(CH2), 25.05 (CH3o-), 19.72 (OCH2CH3), 18.51 (CH3p-), 18.05
(CH2Si) ppm. IR (KBr): n = 1609 (C=N), 1483 (=CN), 1084 (CN)
cm–1. UV/Vis (l): 340, 416 nm.
(12) (a) González-Arellano, C.; Gutiérrez-Puebla, E.; Iglesias,
M.; Sánchez, F. Eur. J. Inorg. Chem. 2004, 1955.
(b) Corma, A.; Gutiérrez-Puebla, E.; Iglesias, M.; Monge,
A.; Pérez-Ferreras, S.; Sánchez, F. Adv. Synth. Catal. 2006,
348, 1899.
Acknowledgment
Financial support by the Dirección General de Investigación
Científica y Técnica of Spain (Project MAT2006-14274-C02-01
and 02) is gratefully acknowledged. C. González-Arellano thanks
the I3P program for financial support.
(13) Suzuki: the reaction was carried out in a 25 mL vessel, at
130 °C in a time range of 3–24 h. In a typical run, a mixture
of aryl halide (10 mmol), boronic acid (15 mmol), aq K3PO4
(20 mmol), and catalyst (10–20 mol%) in 3 mL of o-xylene
was stirred for the desired time. The solution was allowed to
cool, and a 1:1 mixture of Et2O–H2O (20 mL) was added.
The organic layer was washed, separated, further washed
with another 10 mL portion of Et2O, dried with anhyd
MgSO4, and filtered. The solvent and volatiles were
completely removed under vacuum to give the crude product
which subjected to column chromatographic separation
resulted in pure compounds. The reaction was followed by
GC-MS. At the end of the process, the mixture of reaction
was filtered; the residue of support-containing catalyst
washed to completely remove the remains of products and/
or reactants and used again.
(14) Sonogashira: The reaction was carried out in a 25 mL vessel,
at 130 °C during 24 h. In a typical run, a mixture of aryl
halide (10 mmol), alkyne (15 mmol), aq K2CO3 or K3PO4
(20 mmol) and catalyst (10–20 mol%) in 3 mL of o-xylene
was stirred for the desired time. The reaction was followed
by GC-MS. At the end of the process, the mixture of reaction
was filtered; the residue of support-containing catalyst
washed to completely remove the remains of products and/
or reactants, and used again.
References and Notes
(1) (a) Hashmi, A. S. K.; Hutchings, G. J. Angew. Chem. Int. Ed.
2006, 45, 7896. (b) Bond, G. C.; Louis, C.; Thompson, D. T.
In Catalysis by Gold; Imperial College Press: London,
2006. (c) Dyker, G. Angew. Chem. Int. Ed. 2000, 39, 4237;
and references therein.
(2) Corma, A.; García, H. Chem. Rev. 2003, 103, 4307.
(3) (a) Yao, X.; Li, Ch.-J. J. Am. Chem. Soc. 2004, 126, 6884.
(b) Wei, Ch.; Li, Ch.-J. J. Am. Chem. Soc. 2003, 125, 9584.
(4) (a) Haruta, M.; Yamada, N.; Kobayashi, T.; Iijima, S. J.
Catal. 1989, 115, 301. (b) Guzman, J.; Gates, B. C. J. Am.
Chem. Soc. 2004, 126, 2672. (c) Daniel, M. C.; Astruc, D.
Chem. Rev. 2004, 104, 293. (d) Lemire, C.; Meyer, R.;
Shaikhutdino, S.; Freund, H. J. Angew. Chem. Int. Ed. 2004,
43, 118.
(5) Corma, A.; Serna, P. Science 2006, 313, 332.
(6) (a) Prati, L.; Rossi, M. J. Catal. 1998, 176, 552. (b) Abad,
A.; Concepción, P.; Corma, A.; García, H. Angew. Chem.
Int. Ed. 2005, 44, 4066. (c) Enache, D. I.; Edwards, J. K.;
Landon, P.; Solsona-Espriu, B.; Carley, A. F.; Herzing, A.
A.; Watanabe, M.; Kiely, C. J.; Knight, D. W.; Hutchings, G.
J. Science 2006, 311, 362.
Synlett 2007, No. 11, 1771–1774 © Thieme Stuttgart · New York