Organometallics
Article
ligand, which always show high EQE values of above 25%.15
Furthermore, both devices demonstrate low-efficiency rolloff.
For device G1, the current efficiencies (ηc) can still be obtained
as 49.2 and 36.5 cd A−1 when the luminance reaches 5000 and
10000 cd m−2, respectively. The G2 device shows even lower
efficiency rolloff with current efficiencies of 48.5 cd A−1 at the
brightness of 5000 cd m−2 and 43.1 cd A−1 at that of 10000 cd
m−2, respectively.
lifetime curves and cyclic voltammograms of Pt1 and Pt2
Crystallographic data for Pt2 (CIF)
AUTHOR INFORMATION
Corresponding Author
ORCID
■
The good device properties may be ascribed to the following
facts. First, the electron transport ancillary ligand pop is applied
in Pt(II) complexes. Because the hole mobility of TAPC (1 ×
10−2 cm2 V−1 s−1) is much higher than the electron mobility of
the TmPyPB (1 × 10−3 cm2 V−1 s−1) and the high LUMO
energy barrier between TmPyPB and 2,6DczPPy, the excitons
are expected to accumulated near the interface of (Pt
complexes (5 wt %):2,6DCzPPy)/TmPyPB, which is inclined
to lead to the severe triplet−polaron annihilation (TPA),
triplet−triplet annihilation (TTA), high-efficiency rolloff.14,16
Thus, the enhanced electron-transporting ability of the dopants
can increase the excitation lifetime of the OLEDs. In this work,
the −CF3 group and the 1,3,4-oxadiazole unit are introduced
into the framework of the main ligand, which can lower the
LUMO energy levels and benefit the electron transport
properties. Though the maximum efficiency of G2 is lower
than that of G1, the introduction of the CF3 unit in the Pt(II)
complex results in low-efficiency rolloff. Second, the stepwise
changes in HOMO/LUMO energy level of all layers is
beneficial for the injection and transport of both holes and
electrons, which will result in high-performance green OLEDs.
Finally, the broad recombination zone, good balanced
distribution, and improved trapping of carriers caused by
double light-emitting layers are adopted in this device, which
showed higher current efficiency, higher brightness, and slower
efficiency rolloff.17
Notes
The authors declare no competing financial interest.
REFERENCES
■
(1) (a) Forrest, M. A.; BAldo, M. A.; O’Brien, D. F.; You, Y.;
Shoustikov, A.; Sibley, S.; Thompson, M. E. Nature 1998, 395, 151−
154. (b) Kwong, R. C.; Lamansky, S.; Thompson, M. E. Adv. Mater.
2000, 12, 1134−1138. (c) Sasabe, H.; Kido, J. Chem. Mater. 2011, 23,
621−630.
(2) (a) Lamansky, S.; Djurovich, P.; Murphy, D.; Abdel-Razzaq, F.;
Lee, H.-E.; Adachi, C.; Burrows, P. E.; Forrest, S. R.; Thompson, M. E.
J. Am. Chem. Soc. 2001, 123, 4304−4312. (b) Wen, L.-L.; Yu, J.; Sun,
H.-Z.; Shan, G.-G.; Zhao, K.-Y.; Xie, W.-F.; Su, Z.-M. Org. Electron.
2016, 35, 142−150. (c) Huang, S.-F.; Sun, H.-Z.; Shan, G.-G.; Wu, Y.;
Zhang, M.; Su, Z.-M. New J. Chem. 2016, 40, 4635−4642. (d) Li, P.;
Zeng, Q.-Y.; Sun, H.-Z.; Akhtar, M.; Shan, G.-G.; Hou, X.-G.; Li, F.-S.;
Su, Z.-M. J. Mater. Chem. C 2016, 4, 10464−10470.
(3) (a) Chan, S.-C.; Chan, M. C. W.; Wang, Y.; Che, C.-M.; Cheung,
K.-K.; Zhu, N. Chem. - Eur. J. 2001, 7, 4180−4190. (b) Brooks, J.;
Babayan, Y.; Lamansky, S.; Djurovich, P. I.; Tsyba, I.; Bau, R.;
Thompson, M. E. Inorg. Chem. 2002, 41, 3055−3066. (c) Li, L.;
Chow, W.-C.; Wong, W.-Y.; Chui, C.-H.; Wong, R. S.-M. J. Organomet.
Chem. 2011, 696, 1189−1197. (d) Zhang, J.; Zhao, F. C.; Zhu, X. J.;
Wong, W.-K.; Ma, D. G.; Wong, W.-Y. J. Mater. Chem. 2012, 22,
16448−16457. (e) Zhan, H.; Wong, W.-Y.; Ng, A.; Djurisic, A. B.;
Chan, W.-K. J. Organomet. Chem. 2011, 696, 4112−4120. (f) Ho, C.-
L.; Wong, W.-Y. New J. Chem. 2013, 37, 1665−1683.
(4) Chou, P. T.; Chi, Y. Chem. - Eur. J. 2007, 13, 380−395.
(5) (a) Mu, H.; Klotzkin, D.; de Silva, A.; Wagner, H. P.; White, D.;
Sharpton, B. J. Phys. D: Appl. Phys. 2008, 41, 235109. (b) Movla, H.
Optik 2015, 126, 5237−5240. (c) Hung, W.-Y.; Chiang, P.-Y.; Lin, S.-
W.; Tang, W.-C.; Chen, Y.-T.; Lin, S.-H.; Chou, P.-T.; Hung, Y.-T.;
Wong, K.-T. ACS Appl. Mater. Interfaces 2016, 8, 4811−4818.
(6) (a) Zhu, Y. C.; Zhou, L.; Li, H. Y.; Xu, Q. L.; Teng, M. Y.; Zheng,
Y. X.; Zuo, J. L.; Zhang, H. J.; You, X. Z. Adv. Mater. 2011, 23, 4041−
4046. (b) Teng, M. Y.; Zhang, S.; Jiang, S. W.; Yang, X.; Lin, C.;
Zheng, Y. X.; Wang, L. Y.; Wu, D.; Zuo, J. L.; You, X. Z. Appl. Phys.
Lett. 2012, 100, 073303−073306. (c) Li, H. Y.; Zhou, L.; Teng, M. Y.;
Xu, Q. L.; Lin, C.; Zheng, Y. X.; Zuo, J. L.; Zhang, H. J.; You, X. Z. J.
Mater. Chem. C 2013, 1, 560−565. (d) Xu, Q. L.; Wang, C. C.; Li, T.
Y.; Teng, M. Y.; Zhang, S.; Jing, Y. M.; Yang, X.; Li, W. N.; Lin, C.;
Zheng, Y. X.; Zuo, J. L.; You, X. Z. Inorg. Chem. 2013, 52, 4916−4925.
(e) Xu, Q.-L.; Liang, X.; Jiang, L.; Zhao, Y.; Zheng, Y.-X. RSC Adv.
2015, 5, 89218−89225. (f) Xu, Q.-L.; Liang, X.; Zhang, S.; Jing, Y.-M.;
Liu, X.; Lu, G.-Z.; Zheng, Y.-X.; Zuo, J.-L. J. Mater. Chem. C 2015, 3,
3694−3701. (g) Zhang, S.; Xia, J.-C.; Wu, Z.-G.; Lu, G.-Z.; Zhao, Y.;
Zheng, Y.-X. Eur. J. Inorg. Chem. 2016, 2016, 2556−2561. (h) Xu, Q.-
L.; Liang, X.; Jiang, L.; Zhao, Y.; Zheng, Y.-X. Dalton. Trans. 2016, 45,
7366−7372.
(7) (a) Tang, H.-J.; Tang, H.; Zhang, Z.-G.; Yuan, J.-B.; Cong, C.-J.;
Zhang, K.-L. Synth. Met. 2009, 159, 72−77. (b) Lee, J. Y.; Shizu, K.;
Tanaka, H.; Nomura, H.; Yasuda, T.; Adachi, C. J. Mater. Chem. C
2013, 1, 4599−4604. (c) Bharti, A.; Bharty, M. K.; Kashyap, S.; Singh,
U. P.; Butcher, R. J.; Singh, N. K. Polyhedron 2013, 50, 582−591.
(d) Tanaka, H.; Shizu, K.; Lee, J.; Adachi, C. J. Phys. Chem. C 2015,
119, 2948−2955. (e) Wang, Z.; He, L.; Duan, L.; Yan, J.; Tang, R.-R.;
Pan, C.-Y.; Song, X.-Z. Dalton. Trans. 2015, 44, 15914−15923.
(f) Zhang, F.-L.; Li, W.-L.; Yu, Y.; Jing, Y.-M.; Ma, D.-X.; Zhang, F.-Q.;
CONCLUSION
■
In conclusion, two green cyclometalated Pt(II) complexes Pt1
and Pt2 using 2-(5-phenyl-1,3,4-oxadiazol-2-yl)phenol ancillary
ligand have been successfully prepared with photoluminescence
quantum efficiency yields of 20.0% and 31.0% in CH2Cl2 at
room temperature. EL devices with ITO/TAPC (40 nm)/Pt1
or Pt2 (5 wt %):TCTA (10 nm)/Pt1 or Pt2 (5 wt
%):2,6DCzPPy (10 nm)/TmPyPB(40 nm)/LiF (1 nm)/Al
(100 nm) displayed promising performances with a ηc,max value
of 55.6 cd A−1, a maximum EQE value of 18.0%, and a peak ηp
value of 52.2 lm W−1. This study suggests that Pt(II) complexes
containing the electron-transporting pop ancillary ligand have
potential applications in OLEDs.
ASSOCIATED CONTENT
■
S
* Supporting Information
The Supporting Information is available free of charge on the
Details of materials and measurements, synthesis details
of 2-[4-(trifluoromethyl)phenyl]pyridine and 2-(5-phe-
nyl-1,3,4-oxadiazol-2-yl)-phenol ligands, details of X-ray
crystallography and electrochemical tests, procedures and
methods of OLED fabrication and measurements,
crystallographic data, selected bond lengths and angles,
and the crystal-packing diagram of Pt2, and selected
F
Organometallics XXXX, XXX, XXX−XXX