Page 5 of 7
JouPr lne aa ls eo ꢀ fd Mo ꢀ an toe t rꢀ iaadl sj u Cs t hꢀ me ma r igs i tn r sy ꢀ C
JournalꢀNameꢀ
ꢀCOMMUNICATIONꢀ
Considering the above results, there is still much room to improve In summary, we have developed a novel series of TVAiewDAFrticelme Oitntleinres
the carrier balance in the EML by introducing a hole transporting called Ac–RPM derivatives using a PM/ DA Oc I: c1 0o .m1 0 b3 i 9n /aCt i5 oT nC .0 4T 0 h5 e7 sDe
material that is superior to DPEPO between the HTL and the EML. derivatives exhibited a light-blue emission in a toluene solution.
Therefore, we introduced N,N-dicarbazoyl-3,5-benzene (mCP) with Among these, Ac–MPM showed an intense emission with a high
a shallower I
p
d
level (6.0 eV) than that of DPEPO (6.7 eV). In other ηPL of 80%, and a τ of 26 µs in a DPEPO host matrix. By a carrier-
words, we used a double emission layer (DEML) strategy using and exciton-confining structure, the optimized OLED showed a
−
1
mCP/DPEPO host materials. We fabricated a DEML device with a
structure of [ITO/TAPC (30 nm)/10 wt% Ac–MPM-doped mCP (10
nm)/10 wt% Ac–MPM-doped DPEPO (10 nm) /B3PyPB (50 nm)/
LiF (0.5 nm)/Al (100 nm)]. Figure S-6b shows the energy diagrams
of these devices. The J–V–L and the PE–L–EQE characteristics are
shown in Figure 5. This light-blue device with λEL = 487 nm
light-blue emission and realized a high ηp,max of 62 lm W and a
high ηext,max of 25% with an unprecedentedly low Von of 2.8 V,
[19–24]
which is the lowest Von so far (Table S-4).
For the practical
application of blue TADF devices, there are still several challenges,
such as pure-blue emission, reduced efficiency roll-off at high
current density, and low drive voltage at high brightness. Further
design and synthesis of novel blue TADF emitters are currently
−
1
achieves an ηext,max of 24.5% and ηp,max of 61.6 lm W with a low
V
on of 2.80 V. The Von is very close to the energy-gap-voltage values being developed in our laboratory. We believe that our results can
−
2
of Ac–MPM (2.54 eV). Even at 100 cd m , a ηext,100 of 17.2%, accelerate the development of TADF OLED technology for future
−
1
lighting applications.
η
p,100 of 34 lm W , and V100 of 3.57 V are realized.
[
[
1] J. Kido, M. Kimura, K. Nagai, Science, 1995, 267, 1332–1334.
a)
2] Y. Sun, N. C. Giebink, H. Kanno, B. Ma, M. E. Thompson, S. R.
Forrest, Nature, 2006, 440, 908–912.
3] B. W. D’Andrade, J. Esler, C. Lin, V. Adamovich, S. Xia, M. S.
Weaver, R. Kwong, J. J. Brown, Proc. SPIE, 2008, 7051, 70510Q-1.
4] S. Reineke, F. Lindner, G. Schwartz, N. Seidler, K. Walzer, B.
Lussem, K. Leo, Nature, 2009, 459, 234–238.
5] M. G. Helander, Z. B. Wang, J. Qiu, M. T. Greiner, D. P. Puzzo,
Z. W. Liu, Z. H. Lu, Science, 2011, 332, 944–947.
6] T.-H. Han, Y. Lee, M.-R Choi, S.-H. Woo, S.-H. Bae, B. H.
Hong, J.-H. Ahn & T.-W. Lee, Nat. Photon., 2012, 6, 105–110.
[
[
[
[
[
[
7] H. Sasabe, J. Kido, J. Mater. Chem. C, 2013, 1, 1699–1707.
8] H. Sasabe, J. Kido, Eur. J. Org. Chem., 2013, 7653–7663.
b)
[9] D. Tanaka, H. Sasabe, Y.-J. Li, S.-J. Su, T. Takeda, J. Kido, Jpn.
J. Appl. Phys., 2007, 46, L10–L12.
[
[
10]
C. W. Lee, J. Y. Lee, Adv. Mater., 2013, 25, 5450–5454.
11] J.-H. Lee, S.-H. Cheng, S.-J. Yoo, H. Shin, J.-H. Chang, C.-I.
Wu, K.-T. Wong, J.-J. Kim, Adv. Funct. Mater., 2015, 25, 361–366.
12] K.-H. Kim, S. Lee, C.-K. Moon, S.-Y. Kim, Y.-S. Park, J.-H.
Lee, J. W. Lee, J. Huh, Y. You, J.-J. Kim, Nat. Commun., 2014, 5,
769.
13]
Hirasawa, Y.-J. Pu, J. Kido, Adv. Funct. Mater., 2013, 23, 5550–
555.
14]
6, 5062–5066.
[
4
[
H. Sasabe, H. Nakanishi Y. Watanabe, S. Yano, M.
5
[
K. Udagawa, H. Sasabe, C. Cai, J. Kido, Adv. Mater., 2015,
2
Figure 5. a) J–V–L characteristics, inset: EL spectra at 0.5 mA, and
b) PE–EQE–L characteristics of Ac–MPM-based OLEDs.
Thisꢀjournalꢀisꢀ©ꢀTheꢀRoyalꢀSocietyꢀofꢀChemistryꢀ20xxꢀ
J.ꢀName.,ꢀ2013,ꢀ00,ꢀ1-3ꢀ|ꢀ5ꢀ
Pleaseꢀdoꢀnotꢀadjustꢀmarginsꢀ