Communication
ChemComm
Considering the importance of the electron-density of the
aromatic substituent, we decided to apply the oxidative coupling
reaction to electron-rich heterocycles. We selected 3-acetylindoles
8 M. P. DeMartino, K. Chen and P. S. Baran, J. Am. Chem. Soc., 2008,
1
30, 11546–11560.
P. S. Baran and M. P. DeMartino, Angew. Chem., Int. Ed., 2006, 45,
083–7086.
9
7
with different N-protecting groups and substituents together with 10 P. S. Baran and J. M. Richter, J. Am. Chem. Soc., 2005, 127,
1
5394–15396.
2
-acetylated benzofuran, pyrrole, thiophene and furan under
1
1
1 P. Q. Nguyen and H. J. Sch ¨a fer, Org. Lett., 2001, 3, 2993–2995.
2 H.-Y. Jang, J.-B. Hong and D. W. C. MacMillan, J. Am. Chem. Soc.,
2007, 129, 7004–7005.
3 V. Alezra and T. Kawabata, Synthesis, 2016, 2997–3016.
4 H. Zhao, D. C. Hsu and P. R. Carlier, Synthesis, 2005, 1–16.
5 P. R. Carlier, D. C. Hsu and S. Antolak Bryson, Stereochemical aspects
of organolithium compounds, John Wiley & Sons, S. E. Denmark,
New York, 2010, vol. 26, pp. 53–91.
different reaction conditions (in situ or separate deprotonation).
The results are reported in Table 4.
1
1
1
The best protecting group for indole is Boc carbamate
(
entries 1–5). We observed that separate deprotonation improved
the yield but slightly decreased a bit the enantiomeric excess
entries 4 and 5 or 10 and 11). In some cases, separate deprotona-
tion did not lead to the expected product (entries 3 and 9) probably
(
1
6 V. Veeraswamy, G. Goswami, S. Mukherjee, K. Ghosh, M. L. Saha,
A. Sengupta and M. K. Ghorai, J. Org. Chem., 2018, 83, 1106–1115.
because of lower stability of the enolate. In almost all cases, we 17 H. Ohtsuki, M. Takashima, T. Furuta and T. Kawabata, Tetrahedron
Lett., 2018, 59, 1188–1191.
8 T. Liu, N. Yan, H. Zhao, Z.-X. Wang and X.-G. Hu, J. Fluorine Chem.,
were pleased to obtain the expected compounds with enantiomeric
excesses above 72% and in reasonable yields in many cases. The
1
2018, 207, 18–23.
best result was obtained, using compound 9, with compound 20 19 K. Kasamatsu, T. Yoshimura, A. Mandi, T. Taniguchi, K. Monde,
T. Furuta and T. Kawabata, Org. Lett., 2017, 19, 352–355.
0 K. Tomohara, K. Kasamatsu, T. Yoshimura, T. Furuta and
T. Kawabata, Chem. Pharm. Bull., 2016, 64, 899–906.
being obtained under in situ conditions with 88% ee and in 57%
yields. This reaction was also performed on a 2 mmol scale (with
2
4
equiv. of indole 9) with the same success (and 1 g of unreacted 21 J. H. Kim, S. Lee and S. Kim, Angew. Chem., Int. Ed., 2015, 54,
10875–10878.
indole 9 was recovered after purification, which compensates the
drawback of the coupling partner excess).
22 E. Tayama, N. Naganuma, H. Iwamoto and E. Hasegawa, Chem.
Commun., 2014, 50, 6860–6862.
To conclude, we have developed the first enantioselective 23 S. Yamazaki, T. Naito, M. Niina and K. Kakiuchi, J. Org. Chem., 2017,
8
2, 6748–6763.
heterocoupling of enolates. We showed thus that MOC was
adapted to this reaction with electron-rich ketones, the capto-
2
4 T. Nokami, Y. Yamane, S. Oshitani, J. Kobayashi, S. Matsui, T. Nishihara,
H. Uno, S. Hayase and T. Itoh, Org. Lett., 2015, 17, 3182–3185.
dative character of the radical issued from 1 being probably 25 C. S. Gloor, F. D ´e n `e s and P. Renaud, Free Radical Res., 2016, 50,
S102–S111.
essential to this result. 1,4-Dicarbonyl motifs with a quaternary
2
2
6 H. Miyabe, Eur. J. Org. Chem., 2017, 3302–3310.
7 A. Gaudel-Siri, D. Campolo, S. Mondal, M. Nechab, D. Siri and
M. P. Bertrand, J. Org. Chem., 2014, 79, 9086–9093.
8 S. Mondal, M. Nechab, N. Vanthuyne and M. P. Bertrand, Chem.
Commun., 2012, 48, 2549–2551.
9 S. Mondal, M. Nechab, D. Campolo, N. Vanthuyne and
M. P. Bertrand, Adv. Synth. Catal., 2012, 354, 1987–2000.
0 A. Sasmal, T. Taniguchi, P. Wipf and D. P. Curran, Can. J. Chem.,
centre were obtained in a good yield and a high enantiomeric
excess up to a 2 mmol scale. Further studies on radical coupling
with other types of partners are under investigation in our
laboratory.
We would like to thank the MESRI (Minist `e re de l’Enseignement
Sup ´e rieur, de la Recherche et de l’Innovation) for a PhD grant for
A. Mambrini.
2
2
3
3
3
3
3
2
012, 1–5.
1 T. Sumanovac Ramljak, M. Sohora, I. Antol, D. Kontrec, N. Basari´c
and K. Mlinari ´c -Majerski, Tetrahedron Lett., 2014, 55, 4078–4081.
2 C.-E. Liu, Q. Han, N. Ma, Z.-S. Geng, R.-H. Zhang and Z.-Q. Jiang,
Tetrahedron Lett., 2013, 54, 541–544.
ˇ
Conflicts of interest
3 B. Giese, P. Wettstein, C. St ¨a helin, F. Barbosa, M. Neuburger,
M. Zehnder and P. Wessig, Angew. Chem., Int. Ed., 1999, 38, 2586–2587.
4 A. G. Griesbeck, W. Kramer and J. Lex, Angew. Chem., Int. Ed., 2001,
There are no conflicts to declare.
40, 577–579.
Notes and references
35 M. J. E. Resendiz, F. Family, K. Fuller, L. M. Campos, S. I. Khan,
N. V. Lebedeva, M. D. E. Forbes and M. A. Garcia-Garibay, J. Am.
Chem. Soc., 2009, 131, 8425–8433.
1
2
S. Murarka and A. P. Antonchick, Synthesis, 2018, 2150–2162.
F. Guo, M. D. Clift and R. J. Thomson, Eur. J. Org. Chem., 2012, 36 H.-G. Schmalz, C. B. de Koning, D. Bernicke, S. Siegel and
881–4896. A. Pfletschinger, Angew. Chem., Int. Ed., 1999, 38, 1620–1623.
C. L. Martin, L. E. Overman and J. M. Rohde, J. Am. Chem. Soc., 2010, 37 B. Viswambharan, D. Gori, R. Guillot, C. Kouklovsky and V. Alezra,
32, 4894–4906. Org. Lett., 2014, 16, 788–791.
T. Amaya, Y. Maegawa, T. Masuda, Y. Osafune and T. Hirao, J. Am. 38 T. T. Mai, B. Viswambharan, D. Gori, C. Kouklovsky and V. Alezra,
Chem. Soc., 2015, 137, 10072–10075. J. Org. Chem., 2012, 77, 8797–8801.
T. Amaya, Y. Osafune, Y. Maegawa and T. Hirao, Chem. – Asian J., 39 M. Branca, S. Pena, R. Guillot, D. Gori, V. Alezra and C. Kouklovsky,
017, 12, 1301–1304. J. Am. Chem. Soc., 2009, 131, 10711–10718.
F. Guo, L. C. Konkol and R. J. Thomson, J. Am. Chem. Soc., 2011, 133, 40 M. Branca, D. Gori, R. Guillot, V. Alezra and C. Kouklovsky, J. Am.
8–20. Chem. Soc., 2008, 130, 5864–5865.
E. E. Robinson and R. J. Thomson, J. Am. Chem. Soc., 2018, 140, 41 B. M. Casey and R. A. Flowers, J. Am. Chem. Soc., 2011, 133,
956–1965. 11492–11495.
4
3
4
5
6
7
1
2
1
1
This journal is ©The Royal Society of Chemistry 2018
Chem. Commun., 2018, 54, 12742--12745 | 12745