[6] Su CT, Hsu JT, Hsieh HP. Anti-HSV activity of digitoxin and its possible
[26] Kreis W, Reinhard E. 12 beta-Hydroxylation of digitoxin by suspension-
cultured Digitalis lanata cells: production of digoxin in 20-litre and 300-
litre air-lift bioreactors. J Biotechnol 1992; 26: 257–273
mechanisms. Antiviral Res 2008; 79: 62–70
[7] Diederich M, Muller F, Cerella C. Cardiac glycosides: From molecular tar-
gets to immunogenic cell death. Biochem Pharmacol 2017; 125: 1–11
[27] Theurer C, Treumann HJ, Faust T, May U, Kreis W. Glycosylation in carde-
nolide biosynthesis. PCTOC 1994; 38: 327–335
[8] Calderon-Montano JM, Burgos-Moron E, Orta ML, Maldonado-Navas D,
Garcia-Dominguez I, Lopez-Lazaro M. Evaluating the cancer therapeutic
potential of cardiac glycosides. Biomed Res Int 2014; 2014: 794930
[28] Kreis W, Reinhard E. 12beta-Hydroxylation of digitoxin by suspension-
cultured Digitalis lanata cells. Production of deacetyllanatoside C using
a two-stage culture method. Planta Med 1988; 54: 143–148
[9] Cerella C, Dicato M, Diederich M. Assembling the puzzle of anti-cancer
mechanisms triggered by cardiac glycosides. Mitochondrion 2013; 13:
225–234
[29] Kreis W, May U, Reinhard E. UDP-glucose: digitoxin 16′-O-glucosyltrans-
ferase from suspension-cultured Digitalis lanata cells. Plant Cell Rep
1986; 5: 442–445
[10] Mijatovic T, Dufrasne F, Kiss R. Cardiotonic steroids-mediated targeting
of the Na(+)/K(+)-ATPase to combat chemoresistant cancers. Curr Med
Chem 2012; 19: 627–646
[30] Theurer C, Kreis W, Reinhard E. Effects of digitoxigenin, digoxigenin, and
various cardiac glycosides on cardenolide accumulation in shoot cultures
of Digitalis lanata. Planta Med 1998; 64: 705–710
[11] Elbaz HA, Stueckle TA, Tse W, Rojanasakul Y, Dinu CZ. Digitoxin and its
analogs as novel cancer therapeutics. Exp Hematol Oncol 2012; 1: 4
[31] Munkert J, Ernst M, Muller-Uri F, Kreis W. Identification and stress-in-
duced expression of three 3beta-hydroxysteroid dehydrogenases from
Erysimum crepidifolium Rchb. and their putative role in cardenolide bio-
synthesis. Phytochemistry 2014; 100: 26–33
[12] Schneider NFZ, Geller FC, Persich L, Marostica LL, Padua RM, Kreis W,
Braga FC, Simoes CMO. Inhibition of cell proliferation, invasion and migra-
tion by the cardenolides digitoxigenin monodigitoxoside and convalla-
toxin in human lung cancer cell line. Nat Prod Res 2016; 30: 1327–1331
[32] Singh S, Vishwakarma RK, Kumar RJS, Sonawane PD, Ruby, Khan BM.
Functional characterization of a flavonoid glycosyltransferase gene from
Withania somnifera (Ashwagandha). Appl Biochem Biotechnol 2013;
170: 729–741
[13] Wang HY, Xin W, Zhou M, Stueckle TA, Rojanasakul Y, OʼDoherty GA.
Stereochemical survey of digitoxin monosaccharides: new anticancer
analogues with enhanced apoptotic activity and growth inhibitory effect
on human non-small cell lung cancer cell. ACS Med Chem Lett 2011; 2:
73–78
[33] Sharma LK, Madina BR, Chaturvedi P, Sangwan RS, Tuli R. Molecular clon-
ing and characterization of one member of 3beta-hydroxy sterol gluco-
syltransferase gene family in Withania somnifera. Arch Biochem Biophys
2007; 460: 48–55
[14] Schneider NFZ. Avaliação da ação citotóxica de cardenolídeos em células
tumorais [thesis]. Florianópolis: Universidade Federal de Santa Catarina;
2015
[34] Lim EK, Ashford DA, Hou B, Jackson RG, Bowles DJ. Arabidopsis glycosyl-
transferases as biocatalysts in fermentation for regioselective synthesis
of diverse quercetin glucosides. Biotechnol Bioeng 2004; 87: 623–631
[15] Braga FC, Kreis W, Braga de Oliveira A. Isolation of cardenolides from a
Brazilian cultivar of Digitalis lanata by rotation locular counter-current
chromatography. J Chromatogr A 1996; 756: 287–291
[35] Nolte E, Sobel A, Wach S, Hertlein H, Ebert N, Muller-Uri F, Slany R, Taubert
H, Wullich B, Kreis W. The new semisynthetic cardenolide analog 3beta-2-
(1-Amantadine)-1-on-ethylamine-digitoxigenin (AMANTADIG) efficient-
ly suppresses cell growth in human leukemia and urological tumor cell
lines. Anticancer Res 2015; 35: 5271–5275
[16] Luckner M, Wichtel M. Digitalis. Stuttgart: Wissenschaftliche Verlagsge-
sellschaft mbH; 2003
[17] Kreis W, Haug B, Yücesan B. Somaclonal variation of cardenolide content
in Heywoodʼs foxglove, a source for the antiviral cardenolide glucoeva-
tromonoside, regenerated from permanent shoot culture and callus. In
Vitro Cell Dev Biol Plant 2014; 51: 35–41
[36] Nolte E, Wach S, Thais Silva I, Lukat S, Ekici AB, Munkert J, Muller-Uri F,
Kreis W, Simoes CMO, Vera J, Wullich B, Taubert H, Lai X. A new semi-
synthetic cardenolide analog 3beta-2-(1-amantadine)-1-on-ethylamine-
digitoxigenin (AMANTADIG) affects G2/M cell cycle arrest and miRNA
expression profiles and enhances proapoptotic survivin-2B expression
in renal cell carcinoma cell lines. Oncotarget 2017; 8: 11676–11691
[18] Beale TM, Taylor MS. Synthesis of cardiac glycoside analogs by catalyst-
controlled, regioselective glycosylation of digitoxin. Org Lett 2013; 15:
1358–1361
[19] Zhou M, OʼDoherty GA. A stereoselective synthesis of digitoxin and digi-
toxigen mono- and bisdigitoxoside from digitoxigenin via a palladium-
catalyzed glycosylation. Org Lett 2006; 8: 4339–4342
[37] Katz A, Lifshitz Y, Bab-Dinitz E, Kapri-Pardes E, Goldshleger R, Tal DM,
Karlish SJD. Selectivity of digitalis glycosides for isoforms of human Na,
K-ATPase. J Biol Chem 2010; 285: 19582–19592
[20] Daisuke Satho. United States Patent US 3,856,944. Pharmaceutical
Compositions; 1974
[38] Laursen M, Yatime L, Nissen P, Fedosova NU. Crystal structure of the
high-affinity Na+K+-ATPase-ouabain complex with Mg2+ bound in the
cation binding site. Proc Natl Acad Sci U S A 2013; 110: 10958–10963
[21] Gantt RW, Peltier-Pain P, Cournoyer WJ, Thorson JS. Using simple donors
to drive the equilibria of glycosyltransferase-catalyzed reactions. Nat
Chem Biol 2011; 7: 685–691
[39] Yatime L, Laursen M, Morth JP, Esmann M, Nissen P, Fedosova NU. Struc-
tural insights into the high affinity binding of cardiotonic steroids to the
Na+,K+-ATPase. J Struct Biol 2011; 174: 296–306
[22] Gantt RW, Peltier-Pain P, Thorson JS. Enzymatic methods for glyco(diver-
sification/randomization) of drugs and small molecules. Nat Prod Rep
2011; 28: 1811–1853
[40] Toyoshima C, Cornelius F. New crystal structures of PII-type ATPases: ex-
citement continues. Curr Opin Struct Biol 2013; 23: 507–514
[23] Shilpa K, Varun K, Lakshmi BS. An alternate method of natural drug pro-
duction: Elciting secondary metabolite production using plant cell cul-
ture. J Plant Sci 2010; 5: 222–247
[41] Yoda A. Structure-activity relationships of cardiotonic steroids for the in-
hibition of sodium- and potassium-dependent adenosine triphospha-
tase. I. Dissociation rate constants of various enzyme-cardiac glycoside
complexes formed in the presence of magnesium and phosphate. Mol
Pharmacol 1973; 9: 51–60
[24] Padua RM, Meitinger N, Dias de Souza JF, Waibel R, Gmeiner P, Braga FC,
Kreis W. Biotransformation of 21-O-acetyl-deoxycorticosterone by cell
suspension cultures of Digitalis lanata (strain W.1.4). Steroids 2012; 77:
1373–1380
[42] Cornelius F, Kanai R, Toyoshima C. A structural view on the functional im-
portance of the sugar moiety and steroid hydroxyls of cardiotonic ste-
roids in binding to Na,K-ATPase. J Biol Chem 2013; 288: 6602–6616
[25] Kreis W, Fulzele D, Hoelz H, Val J, Reinhard E. Production of Cardenolides
by Digitalis Cell Cultures – Models and Process Options. In: Oono K,
Hirabayashi T, Kikuchi S, Handa H, Kajiwara K, eds. Plant Tissue Culture
and Gene Manipulation for Breeding and Formation of Phytochemicals.
Tsukuba: National Institute of Agrobiological Resources (NIAR); 1992:
335–354
[43] Baykov AA, Evtushenko OA, Avaeva SM. A malachite green procedure for
orthophosphate determination and its use in alkaline phosphatase-
based enzyme immunoassay. Anal Biochem 1988; 171: 266–270
Munkert J et al. Production of the… Planta Med