C O M M U N I C A T I O N S
Scheme 1
reaction takes place rapidly under mild conditions and is applicable
to peptide disulfide exchange. In addition, the reaction can be
controlled by changing the ligand or acid, and the application of
this methodology to polysulfides including elemental sulfur is now
under investigation. This is a novel combination of transition metal
chemistry and organosulfur chemistry.
Acknowledgment. This work was supported by JSPS (Nos.
14207094 and 13771323). M.A. expresses her thanks for financial
supports from New Energy and Industrial Technology Development
Organization (NEDO) of Japan (No. 02A44003d), the Hayashi
Memorial Foundation for Female Natural Scientists, the Fujisawa
foundation, and the Sankio Chemical Award in Synthetic Organic
Chemistry, Japan.
Scheme 2
Supporting Information Available: Detailed experimental pro-
cedures, characterization data (PDF). This material is available free of
References
(1) Parker, A. J.; Kharasch, N. Chem. ReV. 1959, 59, 583. Also see the
following for the metal-catalyzed S-S bond cleavage. Kuniyasu, H. In
Catalytic Heterofunctionalization; Togni, A., Grutzmacher, H., Eds.;
Wiley-VCH: Weinheim, 2001; p 271. Kondo, T.; Mitsudo, T. Chem. ReV.
2000, 100, 3205. Beletskaya, I.; Moberg, C. Chem. ReV. 1999, 99, 3435.
(2) Rosengren, Kj. Acta Chem. Scand. 1962, 16, 1401. Milligan, B.; Rivett,
D. E.; Savige, W. E. Aust. J. Chem. 1963, 16, 1020. Sayamol, K.; Knight,
A. R. Can. J. Chem. 1968, 46, 999.
Scheme 3
(3) Nelander, B.: Sunner, S. J. Am. Chem. Soc. 1972, 94, 3576. Nagano, T.;
Arakane, K.; Hirobe, M. Tetrahedron Lett. 1980, 5021. Do, Q. T.;
Elothmani, D.; Guillanton, G. L.; Simonet, J. Tetrahedron Lett. 1997, 38,
3383. Exchange reaction of alkyl disulfide in solution using NO-O2 is
reported. Itoh, T.; Tsutsumi, N.; Ohsawa, A. Bioorg. Med. Chem. Lett.
1999, 9, 2161.
4 (0.48 mmol). Random disproportionation takes place giving
statistical amounts of 7 (0.32 mmol), sec-butyl phenyl disulfide 8
(0.34 mmol), and sec-butyl p-tolyl disulfide 9 (0.34 mmol) at
acetone reflux for 5 min with the recovery of 4 (0.14 mmol), 5
(0.16 mmol), and 6 (0.16 mmol). Such property may be used for
the selective disulfide formation in polymercapto compounds such
as proteins.
A cystine derivative 10 exchanged with 2 to give the unsym-
metrical disulfide 11 without racemization (Scheme 1). It should
be noted that a tripeptide glutathione derivative 12 also undergoes
the reaction giving a disulfide 13 in 74% yield after recrystalization.
The exchange reactions of dialkyl disulfides and dialkyl di-
selenides are also catalyzed by the same complex (Scheme 2).9
When dibutyl diselenide (0.25 mmol) was treated with 1 (1.5 mmol)
in the presence of RhH(PPh3)4 (5 mol %), tris(p-tolyl)phosphine
(20 mol %), and trifluoromethanesulfonic acid (5 mol %) in
refluxing acetone for 15 min, butylselenyl 2-benzoyloxyethyl sulfide
was obtained (0.36 mmol, 72% yield based on the n-C4H9Se group).
It was confirmed that the rhodium complex is essential for the
reaction.
(4) Leandri, G.; Tundo, A. Ric. Sci. 1953, 23, 1646; Chem. Abstr. 1954, 48,
12699t.
(5) McAllan, D. T.; Cullum, T. V.; Dean, R. A.; Fidler, F. A. J. Am. Chem.
Soc. 1951, 73, 3627. Parker, A. J.; Kharasch, N. J. Am. Chem. Soc. 1960,
82, 3071. Haraldson, L.; Olander, C. J.; Sunner, S.; Varde, E. Acta Chem.
Scand. 1960, 14, 1509. Dalman, G.; McDermed, J.; Gorin, G. J. Org.
Chem. 1964, 29, 1480. Harpp, D. N.; Smith, R. A. J. Am. Chem. Soc.
1982, 104, 6045.
(6) Sanger, F. Nature 1953, 171, 1025. Kolthoff, I. M.; Stricks, W.; Kapoor,
R. C. J. Am. Chem. Soc. 1955, 77, 4733. Benesch, R. E.; Benesch, R. J.
Am. Chem. Soc. 1958, 80, 1666. Ryle, A. P.; Sanger, F.; Smith, L. F.;
Kitai, R. Biochem. J. 1955, 60, 541. Kice, J. L.; Ekman, G. E. J. Org.
Chem. 1975, 40, 711.
(7) Disulfide-thiol exchange reaction was reported. For example, Dalman,
G.; McDermed, J.; Gorin, G. J. Org. Chem. 1964, 29, 1480. Eldjarn, L.;
Pihl, A. J. Am. Chem. Soc. 1957, 79, 4589.
(8) Arisawa, M.; Yamaguchi, M. J. Am. Chem. Soc. 2000, 122, 2387. Arisawa,
M.; Yamaguchi, M. AdV. Synth. Cat. 2001, 343, 27. Arisawa, M.;
Yamaguchi, M. Org. Lett. 2001, 3, 311. Arisawa, M.; Yamaguchi, M.
Org. Lett. 2001, 3, 763. Arisawa, M.; Momozuka, R.; Yamaguchi, M.
Chem. Lett. 2002, 272. Arisawa, M.; Suwa, A.; Fujimoto, K.; Yamaguchi,
M. AdV. Synth. Cat. 2003, 345, 560.
(9) Examples of selenosulfide synthesis. Nakazaki, M. J. Chem. Soc., Jpn.,
Pure Chem. Sect. 1954, 75, 338. Kostiner, E. S.; Reddy, M. N.; Urch, D.
S.; Massay, A. G. J. Organomet. Chem. 1968, 15, 383. Sister, H. H.;
Kotia, N. K. J. Org. Chem. 1971, 36, 1700. Guo, H.; Zhang, Y. J. Chem.
Res. (S) 2000, 374. Goto, K.; Nagahama, M.; Mizushima, T.; Shimada,
K.; Kawashima, T.; Okazaki, R. Org. Lett., 2001, 3, 3569. Potapov, V.
A.; Amosova, S. V.; Petrov, P. A.; Romanenko, L. S.; Keiko, V. V. Sulfur
Lett. 1992, 15, 121.
Exchange reaction of disulfides and ditellurides gives tellurino-
sulfides (Scheme 3). No reaction takes place without the rhodium
complex under the conditions.
We describe here a novel Rh-catalyzed exchange reaction of
disulfides. Compared with the conventional exchange reaction, this
JA035221U
9
J. AM. CHEM. SOC. VOL. 125, NO. 22, 2003 6625