J . Org. Chem. 1997, 62, 3405-3406
3405
Sch em e 1
P a lla d iu m -Ca ta lyzed Cr oss-Cou p lin g of
Ar en ed ia zon iu m Sa lts w ith Ar ylbor on ic
Acid s
–
N2+BF4
R′
10% Pd(OAc)2
MeOH, ,1 h
+
R′
B(OH)2
Saumitra Sengupta* and Sanchita Bhattacharyya
R
R
Department of Chemistry, J adavpur University,
Calcutta 700 032, India
1
2
3
a; R = p-Cl
a; R′ = H
b; R′ = Me
b; R = o-Me
Received J anuary 9, 1996 (Revised Manuscript Received
October 23, 1996)
c; R = o-OMe
d; R = o-CO2Me
e; R = m-COMe
f; R = p-Me
In recent years, the palladium-catalyzed cross-coupling
reaction has evolved as a powerful synthetic tool for the
construction of unsymmetrical biaryls.1 The reaction,
which is vastly superior to the classical methods of biaryl
synthesis (Gomberg-Bachmann and Ullmann synthe-
sis),2 usually involves an arylmetal species (ArM) acting
upon an aryl electrophile (Ar′X) in presence of a Pd0
catalyst. Numerous versions of this reaction, featuring
various arylmetals (Arm, M ) MgX,3 ZnX,4 SnR3,5
B(OH)2,6 SiFnR3-n7), are known today among which the
aryltins5 and arylboronic acids6 have found widespread
synthetic applications. However, for all practical pur-
poses, the aryl electrophile component (Ar′X) in these
reactions has been limited to the conventional use of
halides (Br, I) and the newly emerged triflates.8 In order
to broaden the scope of the cross-coupling reaction, we
addressed this latter limitation and sought new Ar′X
components as alternatives to the above. Although
O-aryl carbamates,9a aryl sulfones,9b and aryl mesylates9c
have recently been promoted as new Ar′X components,
cross coupling of the former two are limited to selected
Grignard reagents and suffer from harsh reaction condi-
tions and poor functional group tolerence properties,
whereas aryl mesylates give good yields in their Ni-
catalyzed reactions with arylboronic acids. While pursu-
ing a general program on Pd-catalyzed reactions of
g; R = p-OMe
h; R = p-CO2Me
i; R = p-Br
arenediazonium salts,10 we reasoned that these salts
armed with an excellent nucleofuge (N2) would be a
superior alternative to all those mentioned above and
decided to explore them as aryl electrophile components
in cross-coupling reactions. Although arenediazonium
salts have been used in Heck reactions, which we have
recently extended to aqueous reaction conditions,10 their
use in cross-coupling reactions are virtually unknown
except for an isolated report with organostannanes.11 We
have now successfully engaged them in cross-coupling
reaction with arylboronic acids and in this Note, disclose
our preliminary results.
Initial screening of the reaction conditions with the
diazonium salt 1a and PhB(OH)2 (2a ) revealed that the
usual “Suzuki protocol” (DME, Pd(PPh3)4, aqueous Na2-
CO3) caused extensive decomposition of the diazonium
salt, the main culprit being triphenylphosphine. After
much experimentation, the desired cross coupling was
ultimately achieved with 10 mol % Pd(OAc)2 in refluxing
MeOH or EtOH in the absence of any added base to
produce the biaryl 3a in 80% yield (Scheme 1, Table 1).
Alcoholic solvents12 (over DME, DMF, CH3CN) are ab-
solutely essential for this reaction whereas external
bases, thought to be key components in Suzuki-couplings,
are not required and in fact, are detrimental to success.
Ligandless Pd(OAc)2,13 or 10% Pd-C14 (entry 2, Table 1)
were found to be the only effective catalysts for this
reaction.
(1) Reviews: (a) Hegedus, L. S. J . Organomet. Chem. 1993, 457,
167. (b) Kalinin, V. N. Synthesis 1992, 413. (c) Bringmann, G.; Walter,
R.; Weirich, R. Angew. Chem., Int. Ed. Engl. 1990, 29, 977. (d)
Snieckus, V. Chem. Rev. 1990, 90, 879. (e) Altenbach, H. J . Nachr.
Chem. Tech. Lab. 1988, 36, 1324.
(2) Sainsbury, M. T. Tetrahedron 1980, 36, 3327.
(3) Tamao, K.; Kumada, M. In The Chemistry of the Metal-Carbon
Bond; Hartley, F. R., Ed.; Wiley: New York, 1987; Vol 4, p 820.
(4) Reviews: (a) Negishi, E.-i. Acc. Chem. Res. 1982, 15, 340. (b)
Erdik, E. Tetrahedron 1992, 48, 9577, see especially 9599. Cf. recent
works: (c) Quesnelle, C. A.; Familoni, O. B.; Snieckus, V. Synlett 1994,
349. (d) Koch, K.; Chambers, R. J .; Biggers, M. S. Ibid. 1994, 347.
(5) Review: (a) Mitchell, T. N. Synthesis 1992, 803. Recent works:
(b) Forman, F. W.; Sucholeiki, I. J . Org. Chem. 1995, 60, 523. (c)
Segelstein, B. E.; Butler, T. W.; Chenard, B. L. J . Org. Chem. 1995,
60, 12. (d) Farina, V.; Kapadia, S.; Krishnan, B.; Wang, C.; Liebeskind,
L. S. J . Org. Chem. 1994, 59, 5905.
(6) Reviews: (a) Miyaura, N.; Suzuki, A. Chem. Rev. 1995, 95, 2457.
(b) Martin, A. R.; Yang, Y. Acta Chem. Scand. 1993, 47, 221. Recent
works: (c) Anderson, J . C.; Namli, H. Synlett 1995, 765. (d) Miura,
Y.; Oka, H.; Momoki, M. Synthesis 1995, 1419. (e) Zoltewicz J . A.;
Cruskie, M. P., J r. Tetrahedron 1995, 51, 11401. (f) Beller, M.; Fischer,
H.; Herrmann, W. A.; Ofele, K.; Brossmer, C. Angew. Chem., Int. Ed.
Engl. 1995, 34, 1848. (g) Fu, J .-M.; Zhao, B. P.; Sharp, M. J .; Snieckus,
V. Can. J . Chem. 1994, 72, 227. (h) Maddaford, S. P.; Keay, B. A. J .
Org. Chem. 1994, 59, 6501. Mechanistic studies: (i) Aliprantis, A. O.;
Canary, J . W. J . Am. Chem. Soc. 1994, 116, 6985.
The synthetic efficacy of this reaction was studied with
a number of arenediazonium salts (1a -i) and the boronic
acids 2a ,b which produced the unsymmetrical biaryls
3a -k in fair to excellent yields (Table 1). While all cross-
(10) (a) Sengupta, S.; Bhattacharya, S. J . Chem. Soc., Perkin Trans.
1 1993, 1943. (b) Bhattacharya, S.; Majee, S.; Mukherjee, R.; Sen-
gupta, S. Synth. Commun. 1995, 25, 651. (c) Sengupta, S.; Bhatta-
charya, S. Tetrahedron Lett. 1995, 36, 4475. For nonaqueous varia-
tions, see (d) Beller, M.; Fischer, H.; Kuhlein, K. Tetrahedron Lett.
1994, 35, 8773. (e) Kikukawa, K.; Nagira, K.; Wada, F.; Matsuda, T.
Tetrahedron 1981, 37, 31.
(11) Kikukawa, K.; Kono, K.; Wada, F.; Matsuda, T. J . Org. Chem.
1983, 48, 1333.
(12) For Suzuki coupling in alcoholic solvents, see (a) Kamikawar,
K.; Watanabe, T.; Uemura, M. J . Org. Chem. 1996, 61, 1375. (b)
Campi, E. M.; J ackson, W. R.; Marcuccio, S. H.; Naesland, C. G. M. J .
Chem. Soc., Chem. Commun. 1994, 2395. (c) Smith, G. B.; Dezeny, G.
C.; Hughes, D. L.; King, A. O.; Verhoeven, T. R. J . Org. Chem. 1994,
59, 8151. For aqueous Stille coupling, see (d) Roshchin, A. I.; Bumagin,
N. A.; Beletskaya, I. P. Tetrahedron Lett. 1995, 36, 125. (e) Rai, R.;
Aubrecht, K. B.; Collum, D. B. Tetrahedron Lett. 1995, 36, 3111.
(13) (a) Wallow, T. I.; Novak, B. M. J . Org. Chem. 1994, 59, 5034.
(b) Beletskaya, I. P. Bull. Acad. Sci. USSR, Div. Chem. Sci. (Engl.
Transl.) 1990, 39, 2013.
(7) Review: (a) Hatanaka, Y.; Hiyama, T. Synlett 1991, 845. Recent
work: (b) Hatanaka, Y.; Goda, K.-i.; Okahara, Y.; Hiyama, T. Tetra-
hedron 1994, 50, 8301.
(8) Ritter, K. Synthesis 1993, 735.
(9) (a) Sengupta, S.; Leite, M.; Raslan, D. S.; Quesnelle, C.; Snieckus,
V. J . Org. Chem. 1992, 57, 4066. (b) Clayden, J .; Cooney, J . J . A.;
J ulia, M. J . Chem. Soc., Perkin Trans. 1 1995, 7. (c) Percec, V.; Bae,
J .-Y.; Hill, D. H. J . Org. Chem. 1995, 60, 6895.
(14) (a) Marck, G.; Villiger, A.; Buchecker, R. Tetrahedron Lett. 1994,
35, 3277. (b) Beller, M.; Kuhlein, K. Synlett 1995, 441.
S0022-3263(96)00058-8 CCC: $14.00 © 1997 American Chemical Society