K. Karaghiosoff et al.
ARTICLE
Crystallographic data (excluding structure factors) for the structures in wards sulfur (192.4 mg, 0.75 mmol) was added to the yellow reaction
this paper have been deposited with the Cambridge Crystallographic mixture and refluxed for 1 h at a temperature of 120 °C. Colorless
Data Centre, CCDC, 12 Union Road, Cambridge CB21EZ, UK. crystals of py2P2S4.34O0.66 were obtained while cooling the solution to
Copies of the data can be obtained free of charge on quoting the de- ambient temperature. The precipitate was separated from the solution
pository numbers CCDC-937614 (1b) and CCDC-940974 (2) and dried in vacuo (Yield: 299.4 mg, 43%). 31P{1H} NMR (pyridine):
(Fax: +44-1223-336-033; E-Mail: deposit@ccdc.cam.ac.uk, http://
www.ccdc.cam.ac.uk)
δ (ppm) = 104.3 (s). Elemental analysis (py2P2S4.34O0.66): calcd. C
32.49, N 7.58, H 2.73, S 37.57%; found C 32.60, N 8.48, H 3.61, S
33.74%. Mass (DEI+) m/z = 379.8 (MS = [C10H10N2P2S5]+), 363.6
(MO = [C10H10N2P2S4O]+), 347.9 ([MS–S]+), 299.9 ([MS–py]+),
284.7 ([MO–py]+), 252.8 ([MO–pyS]+), 221.9 ([M–py2]+), 188.8
([MO–pyPS2]+), 128.0 ([PS3]+), 63.0 ([PS]+). Raman (200 mW, room
temp.): ν˜ = 3068 (25), 1604 (46), 1182 (53), 1031 (55), 1015 (100),
472 (84) cm–1. IR (200 mW, room temp.): ν˜ = 3009 (w), 2510 (w),
2124 (w), 1629 (w), 1602 (m), 1596 (w), 1517 (m), 1484 (m), 1476
(s), 1447 (s), 1390 (w), 1323 (w), 1252 (w), 1187 (m), 4481 (m),
1159 (m), 1129 (m), 1051 (m), 1023 (w), 1041 (m), 1014 (m), 998 (m),
896 (br., vs), 767 (m), 743 (s), 731 (m), 718 (m), 675 (vs) cm–1.
NMR Spectroscopy: NMR spectra were recorded with a Jeol EX 400
Eclipse instrument operating at 161.997 MHz (31P). Chemical shifts
are referred to 85% H3PO4 as external standard. All spectra were mea-
sured, if not mentioned otherwise, at 25 °C.
DTA/TG: Thermal analytic measurements were carried out with a
Thermoanalyzer TG-DTA-92 (Setaram) in an inert gas atmosphere
(He). The compound was heated in a corundum melting pot up to a
temperature of 750 °C in steps of 5 °C·min–1.
Mass Spectrometry: Mass spectra were obtained with an MStation
JMS 700 (Jeol) using the ionization method DEI+/EI+.
py2P2S4O (4): To KMnO4 (41.7 mg, 0.264 mmol) a solution of 1
(46.8 mg) in pyridine (5 mL) was added and stirred for 48 h at room
temperature. The precipitate was filtered and the solvent was removed
from the yellow solution in vacuo (Yield: 44 mg, 98%). 31P{1H} NMR
(pyridine): δ (ppm) = 98.0 (s). Elemental analysis for py2P2S4O: calcd.
C 32.96, N 7.69, H 2.77, S 35.20%; found C 37.42, N 8.71, H 3.48,
S 28.24%. Mass (EI+) m/z = 363.9 ([C10H10N2P2S4O]+), 331.9
([M–S]+), 284.7 ([M–py]+), 252.9 ([M–pyS]+), 205.0 ([M–py2]), 190.0
([M–pyS2]+), 173.0 ([M–pyPS2O]+), 128.0 ([PS3]+), 63.0 ([PS]+). Ra-
man (200 mW, room temp.): ν˜ = 3062 (49), 1615 (48), 1016 (100),
470 (60), 385 (52) cm–1. IR (200 mW, room temp.): ν˜ = 3056 (vw),
2397 (w), 1631 (w), 1593 (w), 1532 (w), 1484 (m), 1444 (w), 1385
(vw), 1248 (w), 1211 (w), 1151 (w), 1051 (w), 1033 (vw), 1021 (vw),
998 (w), 868 (br., vs), 743 (s), 680 (vs), 666 (s) cm–1.
IR Spectroscopy: The spectra were recorded with a Perkin-Elmer
Spektrum one FT-IR instrument (KBr pellets) equipped with a
Diamant-ATR Dura Sampler at 25 °C (neat). Raman spectra were re-
corded with a Bruker RAMII Raman instrument (λ = 1064 nm,
200 mW, 25 °C) equipped with a D418-T Detector at 200 mW at
25 °C.
py2P2S5 (1a): P4S10 (889.2 mg, 2 mmol) was stirred in pyridine
(40 mL) for 1 h. Colorless needles of 1a crystallized overnight and
were separated by filtration and dried in vacuo. (Yield: 1415.4 mg,
93%). 31P{1H} NMR (pyridine): δ (ppm) = 104.2 (s). Elemental analy-
sis for py2P2S5: calcd. C 31.57, N 7.36, H 2.65, P 16.28, S 42.14%;
found C 32.92, N 7.69, H 3.30, S 31.78%. Mass (EI+) m/z = 379.8
([C10H10N2P2S5]+), 347.8 ([M–S]+), 299.9 ([M–py]+), 221.9 ([M–
py2]+), 191.9 ([M–py2S]+), 160.0 ([M–py2S2]+), 128.0 ([PS3]+), 96.0
([PS2]+), 63.0 ([PS]+). Raman (200 mW, room temp.): ν˜ = 3066 (31),
1609 (36), 1567 (29), 2000 (43), 1014 (100), 468 (50), 448 (37)
cm–1. IR (200 mW, room temp.): ν˜ = 1087 (s), 3060 (m), 1633 (vw),
1606 (m), 1532 (vw), 1484 (vw), 1471 (vw), 1452 (vs), 1330 (vw),
1262 (vw), 1194 (w), 1154 (vw), 1093 (vw), 1053 (m), 1044 (s), 1011
(m), 762 (m), 734 (vs), 673 (vs), 655 (w), 642 (w), 575 (vs), 461 (w),
454 (w), 423 (w) cm–1.
Acknowledgements
Financial support by the Department of Chemistry, University of
Munich, is gratefully acknowledged. Stefanie Schedlbauer is thanked
for her help with the syntheses.
References
[1] J. Berzelius, Justus Liebigs Ann. Chem. 1843, 46, 129.
[2] a) E. W. A. Holleman, N. Wiberg, Lehrbuch der anorganischen
Chemie, Walter de Gruyter Verlag, Berlin, 2007; b) R. Blachnik,
A. Hoppe, Z. Anorg. Allg. Chem. 1979, 457, 91; c) R. Blachnik,
U. Peukert, A. Czediwoda, Z. Anorg. Allg. Chem. 1995, 621,
1637; d) M. E. Jason, T. Ngo, S. Rahman, Inorg. Chem. 1997, 36,
2633; e) H. Nowottnick, R. Blachnik, Z. Anorg. Allg. Chem. 1999,
625, 1966; f) H. Nowottnick, R. Blachnik, Z. Anorg. Allg. Chem.
2000, 626, 611; g) R. Thamm, G. Heckmann, E. Fluck, Phos-
phorus Sulfur Silicon Relat. Elem. 1981, 11, 273–278; h) T. Roedl,
A. Pfitzner, Z. Anorg. Allg. Chem. 2011, 637, 1507.
py2P2S5·0.5 py (1b): 1a (380.5 mg, 1 mmol) was dissolved in re-
fluxing pyridine (40 mL) for 2 h. The yellow reaction mixture turned
orange when cooling down to ambient temperature and the formation
of a colorless crystalline precipitate consisting of py2P2S5 could be
observed. The needles were separated and dried in vacuo (Yield:
363.1 mg, 83%). 31P{1H} NMR (pyridine): δ (ppm) = 104.3 (s). Ele-
mental analysis for (py2P2S5)2·py: calcd. C 35.76, N 8.35, H 3.00, P
14.77, S 38.12%; found C 32.92, N 7.74, H 2.86, S 40.76%. Mass
(EI+) m/z = 379.8 ([C10H10N2P2S5]+), 347.9 ([M–S]+), 299.9 ([M–
py]+), 221.9 ([M–py2]+), 191.9 ([M–py2S]+), 160.0 ([M–py2S2]+),
128.0 ([PS3]+), 63.0 ([PS]+). Raman (200 mW, room temp.): ν˜ = 3068
(63), 1610 (23), 1565 (5), 1202 (25), 1012 (100), 465 (37), 448 (14),
417 (30) cm–1. IR (200 mW, room temp.): ν˜ = 3094 (w), 3044 (w),
1610 (m), 1577 (vw), 1476 (vw), 1452 (vs), 1431 (m), 1342 (vw),
1262 (vw), 1199 (vw), 1156 (vw), 1091 (ww), 1057 (m), 1045 (s),
1014 (m), 843 (vw), 763 (vw), 748 (w), 739 (s), 720 (vs), 668 (vs),
642 (vw), 565 (vs), 468 (vw), 457 (s), 421 (w) cm–1.
[3] E. Fluck, H. Binder, Z. Anorg. Allg. Chem. 1967, 354, 113.
[4] M. Meisel, H. Grunze, Z. Anorg. Allg. Chem. 1968, 360, 277.
[5] G. U. Wolf, M. Meisel, Z. Chem. 1982, 22, 54.
[6] G. U. Wolf, DD 245878, DDR, 1986.
[7] a) C. Rotter, Dissertation, LMU Munich 2008; b) C. Rotter, C.
Evangelisti, S. Schoenberger, T. M. Klapötke, K. Karaghiosoff,
Chem. Commun. 2010, 46, 5024.
[8] J. Bergman, B. Pettersson, V. Hasimbegovic, P. H. Svensson, J.
Org. Chem. 2011, 76, 1546.
[9] F. H. Allen, O. Kennard, D. G. Watson, L. Brammer, A. G. Orpen,
R. Taylor, J. Chem. Soc. Perkin Trans. 2 1987, S1–S19.
[10] A. Dimitrov, I. Hartwich, B. Ziemer, D. Heidemann, M. Meisel,
Z. Anorg. Allg. Chem. 2005, 631, 2439.
py2P2S4.34O0.66 (2): P4S3 (1 mmol, 220.1 mg) was refluxed and dis-
solved in pyridine (10 mL) in the presence of traces of water. After-
74
© 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim
Z. Anorg. Allg. Chem. 2014, 68–75