10.1002/chem.201605380
Chemistry - A European Journal
COMMUNICATION
[6]
[7]
J. Mu, Y. Wang, M. Zhao, L. Zhang, Chem. Commun. 2012, 48, 2540-
2542.
dark field scattering spectroscopy proves the formation of hot
carriers by illumination, confirming the proposed hot electrons
enhancement performance mechanism.
a) M. Comotti, C. D. Pina, R. Matarrese, M. Rossi, Angew. Chem. Int. Ed.
2004, 43, 5812-5815; b) P. Pengo, S. Polizzi, L. Pasquato, P. Scrimin, J.
Am. Chem. Soc. 2005, 127, 1616-1617; c) Y. Jv, B. Li, R. Cao, Chem.
Commun. 2010, 46, 8017-8019; d) W. Luo, C. Zhu, S. Su, D. Li, Y. He,
Q. Huang, C.H. Fan, ACS Nano 2010, 4, 7451-7458.
F. Natalio, R. Andre, A. F. Hartog, B. Stoll, K. P. Jochum, R. Wever, W.
Tremel, Nat.Nanotechnol. 2012, 7, 530-535.
In conclusion, our results demonstrate that the enzyme-like
catalytic performance of AuNPs could be significantly enhanced
by visible light irradiation. It is revealed that upon LSPR excitation,
hot carriers (hot electrons and holes) are generated on AuNPs
surface. The efficient injection of hot electrons into the molecular
orbits of absorbed H2O2 activates H2O2 molecule, accelerating the
cleavage of H2O2 into •OH radical. Due to the super oxidation
capacity of •OH radical, a much faster oxidation rate and
enhanced enzyme-like performance can be observed. The
efficiency of the hot electron injection can be further increased by
scavenging the generated hot holes using electron donor like
ethanol. The present work would shed some insights on the
mechanism of plasmon activated enzyme-like reaction, offering a
new strategy for improving performance of the enzyme mimics.
[8]
[9]
Y. Song, K. Qu, C. Zhao, J. Ren, X. Qu, Adv. Mater. 2010, 22, 2206-
2210.
[10] W. Zhang, D. Ma, J. Du, Talanta 2014, 120, 362-367.
[11] Y. J. Song, X. H. Wang, C. Zhao, K. G. Qu, J. S. Ren, X. G. Qu, Chem.
Eur. J. 2010, 16, 3617-3621.
[12] a) V. Nanda, R. L. Koder, Nat. Chem. 2010, 2, 15–24; b) M. Raynal, P.
Ballester, A. Vidal-Ferran, P. W. N. M. van Leeuwen, Chem. Soc. Rev.
2014, 43, 1734-1787.
[13] X. X. Wang, Q. Wu, Z. Shan, Q. M. Huang, Biosens. Bioelectron. 2011,
26, 3614-3619.
[14] S. Wang, W. Chen, A. L. Liu, L. Hong, H. H. Deng, X. H. Lin,
ChemPhysChem 2012, 13, 1199-1204
[15] X. Zheng, Q. Liu, C. Jing, Y. Li, D. Li, W. Luo, Y. Wen, Y. He, Q. Huang,
Y. T. Long, C. Fan, Angew. Chem. Int. Ed. 2011, 50, 11994-11998
[16] a) W. Hou and S. B. Cronin, Adv. Funct. Mater. 2013, 23, 1612-1619; b)
C. L. Wang and D. Astruc, Chem. Soc. Rev. 2014, 43, 7188-7216; c) M.
L. Brongersma, N. J. Halas and P. Nordlander, Nat. Nanotechnol. 2015,
10, 25-34; d) S. Linic, U. Aslam, C. Boerigter and M. Morabito, Nat. Mater.
2015, 14, 567-576.
Acknowledgements
This work is supported by grants from the National Natural
Science Foundation of China (21327902, 21575163, 21635004),
the Natural Science Foundation of Jiangsu Province
(BK20151437). The authors declare that they have no competing
interests.
[17] K. M. Mayer,J. H. Hafner, Chem. Rev. 2011, 111, 3828–3857.
[18] K. Nakayama, K. Tanabe and H. A. Atwater, Appl. Phys. Lett. 2008, 93,
121904.
[19] R. Mout, D. F. Moyano, S. Rana and V. M. Rotello, Chem. Soc. Rev.
2012, 41, 2539–2544.
Keywords: enzyme mimics • localized surface plasmon
resonance (LSPR) • hot electrons • reaction mechanism • gold
nanoparticles (AuNPs)
[20] A. Llevot and D. Astruc, Chem. Soc. Rev. 2012, 41, 242-257.
[21] a) X. Chen, H. Y. Zhu, J. C. Zhao, Z. F. Zheng and X. P. Gao, Angew.
Chem. Int. Ed. 2008, 47, 5353-5356; b) A. Tanaka, K. Hashimoto and H.
Kominami, J. Am. Chem. Soc. 2012, 134, 14526-14533; c) S. S. Rayalu,
D. Jose,M. V. Joshi, P. A.Mangrulkar,K. Shrestha and K. Klabunde, Appl.
Catal. B 2013, 142, 684–693; d) P. Christopher, H. Xin and S. Linic, Nat.
Chem. 2011, 3, 467-472; e) P. Christopher, H. Xin, A. Marimuthu and S.
Linic, Nat. Mater. 2012, 11, 1044-1050.
[1]
a) S. J. Benkovic, S. Hammes-Schiffer, Science 2003, 301, 1196-1202;
b) C. Wang, J. Ouyang, Y. Y. Wang, D. K. Ye, X. H. Xia, Anal. Chem.
2014, 86, 3216-3221; c) A. J. Kirby, Angew. Chem. Int. Ed. 1996, 35,
706-724.
[22] Y. Shi, J. Wang, C. Wang, T. T. Zhai, W. J. Bao, J. J. Xu, X. H. Xia, H. Y.
Chen, J. Am. Chem. Soc. 2015, 137, 7365-7370.
[2]
[3]
J. Liu, X. Hu, S. Hou, T. Wen, W. Liu, X. Zhu, X. Wu, Chem. Commun.
2011, 47, 10981-10983.
[23] Y. F. Huang, M. Zhang, L. B. Zhao, J. M. Feng, D. Y. Wu, B. Ren, Z. Q.
Tian, Angew. Chem. Int. Ed. 2014, 53, 2353-2357.
a) E. Kuah, S. Toh, J. Yee, Q. Ma, Z. Q. Gao, Chem. Eur. J. 2016, 22, 1-
28; b) Y. H. Lin, J. S. Ren, X. G. Qu, Acc. Chem. Res. 2014, 47, 1097-
1105; c) H. Wei,E. K. Wang,Chem. Soc. Rev., 2013, 42, 6060-6093;
d) X. Wang, W. Guo, Y. Hu, J. Wu, H. Wei, Nanozymes: Next Wave of
Artificial Enzymes; Springer-Verlag GmbH Berlin Heidelberg, 2016; e) X.
Wang, Y. Hu, H. Wei, Inorg. Chem. Front. 2016, 3, 41-60; f) R. Ragg, M.
N. Tahir, W. Tremel, Eur. J. Inorg. Chem. 2016, 2016, 1906-1915; g) L.
Gao, X. Yan, Sci. China Life Sci. 2016, 59, 400-402; h) H. Cheng, L.
Zhang, J. He, W. Guo, Z. Zhou, X. Zhang, S. Nie, H. Wei, Anal.
Chem. 2016, 88, 5489-5497; i) H. Cheng, S. Lin, F. Muhammad, Y. Lin,
H. Wei, ACS Sens. 2016, 1, 1336-1343; j) K. Fan, C. Cao, Y. Pan, D. Lu,
D. Yang, J. Feng, L. Song, M. Liang, X. Yan, Nat. Nanotechn. 2012, 7,
459-464; k) H. Wei, E. Wang, Anal. Chem. 2008, 80, 2250-2254.
W. Chen, J. Chen, A. L. Liu, L. M. Wang, G. W. Li and X. H. Lin,
ChemCatChem 2011, 3, 1151-1154.
[24] a) A. O. Govorov, H. Y. Zhang, K. Gun'ko, J. Phys. Chem. C 2013, 117,
16616-16631; b) A. Manjavacas, J. G. Liu, V. Kulkarni, P. Nordlander,
ACS Nano 2014, 8, 7630-7638.
[25] G. Frens, Nature 1973, 241, 20-22.
[26] M. W. Knight, Y. P. Wu, J. B. Lassiter, P. Nordlander, N. J. Halas, Nano
Lett. 2009, 9, 2188-2192.
[27] a) C. Wang, S. J. Li, Z. Q. Wu, J. J. Xu, H. Y. Chen, X. H. Xia, Lab Chip
2010, 10, 639-646; b) C. Wang, Z. H. Sheng, J. Ouyang, J. J. Xu, H. Y.
Chen, X. H. Xia, ChemPhysChem. 2012, 13, 762 -768; c) C. Wang, D. K.
Ye, Y. Y. Wang, T. Lu, X. H. Xia, Lab Chip 2013, 13, 1546-1553; d) H.
Zhao, Y. Dong, P. Jiang, G. Wang, J. Zhang, ACS Appl. Mater. Inter.
2015, 7, 6451-6461.
[4]
[5]
[28] I. K. Konstantinou, T. A. Albanis, Appl. Catal. B: Environ. 2004, 49, 1-72.
[29] Z. Zhang, A. Berg, H. Levanon, R. W. Fessenden, D. Meisel, J. Am.
Chem. Soc. 2003, 125, 7959-7963.
L. Gao, J. Zhuang, L. Nie, J. Zhang, Y. Zhang, N. Gu, T. Wang, J. Feng,
D. Yang, S. Perrett, X. Yan, Nat. Nanotechnol. 2007, 2, 577-583.
[30] J. Ouyang, Z. Q. Li, J. Zhang, C. Wang, J. Wang, X. H. Xia, G. J. Zhou,
Analyst 2014, 139, 3416-3422.
5
This article is protected by copyright. All rights reserved.