M. Bakherad et al. / Chinese Chemical Letters 21 (2010) 656–660
659
of the product was obtained (entry 1). Increasing the amount of palladium catalyst (entry 6) and increasing the reaction
time (entry 8) did not increase the yield of product further. A low palladium concentration resulted in a decreased yield
(
entry 7). Using the optimized reaction conditions, we explored the general applicability of the Pd–salen complex 1
with various benzoyl chlorides 2 containing electron-withdrawing or electron-donating groups and different terminal
alkynes 3 (Table 3). Table 3 shows that the reaction is equally facile with both electron-donating and electron-
withdrawing substituents present on the aroyl chloride, resulting in excellent yields of the corresponding ynones.
Cyclohexane acid chloride also afforded the desired product in 88% yield (entry 6). A hetero-aryl acyl chloride such as
2
-thiophene carbonyl chloride (entry 7) reacted smoothly with phenyl acetylene to give the products in 92% yield. The
reaction was sluggish in the case of the aliphatic alkyne 1-octyne (entry 11), giving a relatively lower yield.
In conclusion, we showed that the air stable palladium–salen complex 1 efficiently catalyzed the copper- and
solvent-free coupling reaction of various acyl chlorides with terminal alkynes under aerobic conditions. The simple
procedure, short reaction time, high selectivity, and excellent isolated yields make this method well-suited for the
generation of a combinatorial library of ynones.
Acknowledgment
The authors would like to thank the Research Council of Shahrood University of Technology for the support of this
work.
References
[
[
[
[
[
[
[
[
[
1] D. Mead, A.E. Asato, M. Denny, et al. Tetrahedron Lett. 28 (1987) 259.
2] V.I. Dodero, L.C. Koll, M.B. Faraoni, et al. J. Org. Chem. 68 (2003) 10087.
3] G. Cabarrocas, M. Ventura, M. Maestro, et al. Tetrahedron Asymmetry 11 (2000) 2483.
4] K. Utimoto, H. Miwa, H. Nozaki, Tetrahedron Lett. 22 (1981) 4277.
5] A. Jeevanandam, K. Narkunan, Y.C. Ling, J. Org. Chem. 66 (2001) 6014.
6] A. Arcadi, F. Marinelli, E. Rossi, Tetrahedron 55 (1999) 13233.
7] R.B. Davis, D.H. Scheiber, J. Am. Chem. Soc. 78 (1956) 1675.
8] M.W. Logue, K. Teng, J. Org. Chem. 47 (1982) 2549.
9] S.A. Mohamed, A. Mori, Org. Lett. 17 (2003) 3057.
[
[
10] Y. Tohda, K. Sonogashira, N. Hagihara, Synthesis (1977) 777.
11] (a) X. Cui, J. Li, Z.P. Zhang, et al. J. Org. Chem. 72 (2007) 9342;
(
(
(
b) M.L. Kantam, P. Srinivas, J. Yadav, et al. J. Org. Chem. 74 (2009) 4882;
c) S.R. Borhade, S.B. Waghmode, Tetrahedron Lett. 49 (2008) 3423;
d) X. Cui, Z. Li, C.Z. Tao, Org. Lett. 8 (2006) 2467.
[
[
[
12] M. Bakherad, H.N. Isfahani, A. Keivanloo, et al. Tetrahedron Lett. 49 (2008) 3819.
13] M. Bakherad, A. Keivanloo, B. Bahramian, et al. Tetrahedron Lett. 50 (2009) 1557.
ꢁ1
1
14] Spectroscopic data 4a: MP 45–46 8C (Lit. [15]) 46–48 8C; IR (KBr) (max cm ): 2200, 1642. H NMR (500 MHz, CDCl
3
): d 7.45–7.70 (m,
ꢁ
1
1
H), 8.22–8.26 (m, 2H). 4b: MP 104–105C (Lit. [16]) 105–106C; IR (KBr) (max cm ): 2202, 1660. H NMR (500 MHz, CDCl ): d 7.42–7.50
8
3
ꢁ1
1
(
(
(
m, 5H), 7.62–7.70 (m, 2H), 8.20 (d, 2H, J = 8.6 Hz). 4c: MP 98–99 8C (Lit. [16]) 99 8C; IR (KBr) (max cm ): 2200, 1635. H NMR
500 MHz, CDCl ): d 3.85 (s, 3H), 6.95 (d, 2H, J = 9.0 Hz), 7.41–7.51 (m, 3H), 7.65–7.69 (m, 2H), 8.18 (d, 2H, J = 8.9 Hz). 4d: MP 69–70 8C
Lit. [17]) 70 8C; IR (KBr) (max cm ): 2203, 1640, 1610, 1570. H NMR (500 MHz, CDCl
3
ꢁ1
1
3
): d 2.43 (s, 3H), 7.30-7.42 (m, 5H), 7.68 (d, 2H,
ꢁ
1
1
J = 8.6 Hz), 8.15 (d, 2H, J = 8.7 Hz). 4e: MP 160–162 8C (Lit. [16]) 162–163 8C; IR (KBr) (max cm ): 2200, 1650, 1510, 1340. H NMR
ꢁ
1
1
(500 MHz, CDCl ): d 7.49–7.83 (m, 5H), 8.42 (s, 4H). 4f: Colorless oil; [16] IR (neat (max cm ): 2200, 1660. H NMR (500 MHz, CDCl ): d
3 3
ꢁ1
1
3
.20–2.14 (m, 10H), 2.42–2.55 (m, 1H), 7.30–7.42 (m, 3H), 7.57–7.60 (m, 2H). 4g: MP 54–55 8C (Lit. [18]) 53–54 8C; IR (KBr) (max cm ):
1
3
010, 2200, 1622, 1410. H NMR (500 MHz, CDCl ): d 7.18–7.22 (m, 1H), 7.35–7.50 (m, 3H), 7.64–7.72 (m, 3H), 8.03 (d, 1H, J = 2.9 Hz). 4h:
ꢁ1
1
3
Colorless oil; [19] IR neat (max cm ): 2950, 2200, 1645. H NMR (500 MHz, CDCl ): d 0.95 (t, 3H, J = 7.2 Hz), 1.44–1.54 (m, 2H), 1.60–
ꢁ1
1.70 (m, 2H), 2.50 (t, 2H, J = 7.2 Hz), 7.46–7.52 (m, 2H), 7.55–7.60 (m, 1H), 8.12–8.15 (m, 2H). 4i: Colorless oil; [20] IR neat (max cm ):
1
2930, 2850, 2200. H NMR (500 MHz, CDCl ): d 0.97 (t, 3H, J = 6.3 Hz), 1.44–150 (m, 2H), 1.56–1.67 (m, 2H), 2.44 (t, 2H, J = 6.2 Hz), 3.88
3
ꢁ1
1
(
s, 3H), 6.94 (d, 2H, J = 8.3 Hz), 8.16 (d, 2H, J = 6.6 Hz). 4j: Colorless oil; [21] IR neat (max cm ): 2955, 2860, 2202, 1645. H NMR
500 MHz, CDCl ): d 0.95 (t, 3 H, J = 6.1 Hz), 1.42–1.52 (m, 2H), 1.61–1.66 (m, 2H), 2.46 (t, 2H, J = 6.8 Hz), 2.65 (s, 3H), 7.21–7.26 (m, 1H),
.34–7.43 (m, 2H), 8.20–8.24 (m, 1H). 4k: Colorless oil; [16] IR neat (max cm ): 2230, 2200, 1650. H NMR (500 MHz, CDCl
m, 11H), 2.55(t, 2H, J = 7.2 Hz), 7.45–7.52 (m, 2H), 7.55–7.61 (m, 1H), 8.12–8.16 (m, 2H). 4l: Colorless oil; [17] IR neat (max cm ): 2930,
(
3
ꢁ1
1
7
3
): d 0.82–1.75
ꢁ1
(
1
2
850, 2199, 1640. H NMR (500 MHz, CDCl
3
): d 0.96 (t, 3H, J = 6.4 Hz), 1.32–1.68 (m, 8H), 2.45 (t, 2H, J = 6.9 Hz), 3.83 (s, 3H), 6.92 (d, 2H,
ꢁ1
1
J = 8.2 Hz), 8.11 (d, 2H, J = 6.6 Hz). 4m: Colorless oil; [17] IR neat (max cm ): 2950, 2940, 2198, 1640. H NMR (500 MHz, CDCl
3
): d 0.90
t, 3H, J = 7.1 Hz), 1.23–1.78 (m, 8H), 2.52 (t, 2H, J = 7.4 Hz), 7.26 (d, 2H, J = 8.3 Hz), 8.05 (d, 2H, J = 7.2 Hz). 4n: Colorless oil; [17] IR neat
(
(
ꢁ1
1
3
max cm ): 2930, 2855, 2240, 2200, 1642, 1595, 1576. H NMR (500 MHz, CDCl ): d 0.92 (s, 3H), 1.22–1.75 (m, 8H), 2.54 (t, 2H,
J = 7.2 Hz), 7.42 (d, 2H, J = 8.2 Hz), 8.10 (d, 2H, J = 8.2 Hz).