Journal of the American Chemical Society
Article
Present Address
⊥Department of Chemistry, The Johns Hopkins University,
Baltimore, MD 21218, USA.
Author Contributions
§T.A.S. and H.L. contributed equally.
Notes
The authors declare no competing financial interest.
ACKNOWLEDGMENTS
■
We would like to thank Prof. James L. Leighton, Dr. Raul
́
Hernan
́
dez San
́
chez, and Dr. Daniel W. Paley for insightful
Figure 4. (A) Common representations of the β silicon effect in
physical organic chemistry. The top panel describes the resonance
pictures of the α- and β-stabilizing silicon effects. The bottom panel
juxtaposes the β-stabilizing effect with the β-destabilizing effect; the β-
destabilizing picture is relevant to the HOMO energy trends observed
in the π−σ−π wires. (B) The logarithm of the π−σ−π wire’s
conductance relative to that of CCC is plotted against the Hammett
discussions as well as Dr. Brandon Fowler and Dr. Yasuhiro
Itagaki for mass spectrometry characterization. T.A.S. is
supported by an NSF Graduate Research Fellowship under
Grant No. 11-44155. H.L. is supported by the Semiconductor
Research Corporation and New York CAIST program. These
studies are supported by the NSF under Grant No. CHE-
1404922.
+
σp coefficients (relative to benzene) obtained for molecules from ref
34 that are similar in structure to the ones studied here.
REFERENCES
(1) Xu, B.; Tao, N. J. Science 2003, 301, 1221.
(2) Klausen, R. S.; Widawsky, J. R.; Steigerwald, M. L.;
Venkataraman, L.; Nuckolls, C. J. Am. Chem. Soc. 2012, 134, 4541.
(3) Su, T. A.; Li, H.; Steigerwald, M. L.; Venkataraman, L.; Nuckolls,
C. Nat. Chem. 2015, 7, 215.
■
Despite the fact that the Hammett experiments do not fully
replicate the break-junction environment, this simple approach
correlates quite well with the observed conductance trends. The
+
general correlation we find between conductance and σp
(4) Mayor, M.; Weber, H. B.; Reichert, J.; Elbing, M.; von Hanisch,
̈
supports the idea that tailoring the strength of σ−π interactions
is useful not only for altering chemical reaction rates but also
for tuning charge transport in single-molecule junctions.
C.; Beckmann, D.; Fischer, M. Angew. Chem., Int. Ed. 2003, 42, 5834.
(5) He, J.; Chen, F.; Li, J.; Sankey, O. F.; Terazono, Y.; Herrero, C.;
Gust, D.; Moore, T. A.; Moore, A. L.; Lindsay, S. M. J. Am. Chem. Soc.
2005, 127, 1384.
(6) Venkataraman, L.; Klare, J. E.; Nuckolls, C.; Hybertsen, M. S.;
Steigerwald, M. L. Nature 2006, 442, 904.
CONCLUSIONS
■
The observed conductance trends, chemical analysis, and DFT
calculations reveal two new design rules for π−σ−π wires that
ultimately arise from periodic trends such as atomic size,
polarizability, and electronegativity: (1) placing heavy atoms
(Si, Ge) in the α-position of the σ-chain decreases the
conductance of the wire by diminishing the interaction between
the thioanisole rings, and (2) placing heavy atoms in the β-
position increases junction conductance by providing a stronger
electronic pathway for communication between the aryl rings.
These design principles can extend to bulk electronic materials
as well: one possible opportunity is to simultaneously solubilize
and tune the electronics of π-conjugated polymers by replacing
the β-carbon atom of an alkyl solubilizing chain with a silicon or
germanium atom. More broadly, our results demonstrate that
the principles of physical organic chemistry are an untapped
vein27 for designing molecules and tuning charge transport for
single-molecule electronics.
(7) (a) Emanuelsson, R.; Lofas, H.; Zhu, J.; Ahuja, R.; Grigoriev, A.;
̈
̊
Ottosson, H. J. Phys. Chem. C 2014, 118, 5637. (b) Emanuelsson, R.;
Denisova, A. V.; Baumgartner, J.; Ottosson, H. Organometallics 2014,
33, 2997. (c) Goransson, E.; Emanuelsson, R.; Jorner, K.; Markle, T.
̈
F.; Hammarstrom, L.; Ottosson, H. Chem. Sci. 2013, 4, 3522.
̈
(8) Miller, R. D.; Michl, J. Chem. Rev. 1989, 89, 1359.
(9) Chicart, P.; Corriu, R. J. P.; Moreau, J. J. E.; Garnier, F.; Yassar, A.
Chem. Mater. 1991, 3, 8.
(10) Usta, H.; Lu, G.; Facchetti, A.; Marks, T. J. J. Am. Chem. Soc.
2006, 128, 9034.
(11) Sun, Y.; Welch, G. C.; Leong, W. L.; Takacs, C. J.; Bazan, G. C.;
Heeger, A. J. Nat. Mater. 2011, 11, 44.
(12) Surampudi, S.; Yeh, M.-L.; Siegler, M. A.; Hardigree, J. F. M.;
Kasl, T. A.; Katz, H. E.; Klausen, R. S. Chem. Sci. 2015, 6, 1905.
(13) Metzger, A.; Piller, F. M.; Knochel, P. Chem. Commun. 2008,
5824.
(14) Su, T. A.; Li, H.; Zhang, V.; Neupane, M.; Batra, A.; Klausen, R.
S.; Kumar, B.; Steigerwald, M. L.; Venkataraman, L.; Nuckolls, C. J.
Am. Chem. Soc. 2015, 137, 12400.
(15) Barrau, J.; Hamida, N. B.; Satge, J. J. Organomet. Chem. 1985,
282, 315.
(16) Barton, T. J.; Hoekman, S. K. J. Am. Chem. Soc. 1980, 102, 1584.
(17) Agraït, N.; Rodrigo, J.; Vieira, S. Phys. Rev. B: Condens. Matter
Mater. Phys. 1993, 47, 12345.
ASSOCIATED CONTENT
* Supporting Information
The Supporting Information is available free of charge on the
■
S
Additional comments, synthetic procedures, character-
ization of compounds, STM-BJ measurement details, and
computational details (PDF)
(18) Gonzalez, M. T.; Wu, S.; Huber, R.; van der Molen, S. J.;
Schonenberger, C.; Calame, M. Nano Lett. 2006, 6, 2238.
̈
(19) Klausen, R. S.; Widawsky, J. R.; Su, T. A.; Li, H.; Chen, Q.;
Steigerwald, M. L.; Venkataraman, L.; Nuckolls, C. Chem. Sci. 2014, 5,
1561.
AUTHOR INFORMATION
■
(20) Su, T. A.; Widawsky, J. R.; Li, H.; Klausen, R. S.; Leighton, J. L.;
Steigerwald, M. L.; Venkataraman, L.; Nuckolls, C. J. Am. Chem. Soc.
2013, 135, 18331.
(21) The calculated Ar−α bond length is essentially the same
regardless of β in the molecules studied here. DFT optimizations
Corresponding Authors
D
J. Am. Chem. Soc. XXXX, XXX, XXX−XXX