1494
A. Martel et al. / Tetrahedron Letters 44 (2003) 1491–1494
Scheme 3. Reagents and conditions: (i) 1.1 equiv. Me3SiSCH2CH2SSiMe3, 0.03 equiv. ZnI2, Et2O, rt, 48 h (48%); (ii) 1.0 equiv.
HSCH2CH2SH, 1.25 equiv. TMSOTf, CH2Cl2, −78°C, 4 h (71%).
References
rated and extracted with diethylether (3×10 mL). The
ether layer was separated, dried (MgSO4) and filtered
through a short pad of silica gel. After evaporation of the
solvent in vacuo, the desired product was obtained in
most cases with a high purity. Thioketals 2, 4e and 4f
were further purified by column chromatography on sil-
ica gel (ethyl acetate/cyclohexane: 1/9 to 2/8). Selected
data for 2 (colorless oil), HRMS (EI): (C18H28O5S2) calcd
388.1378; found 388.1360.
1. (a) Kocienski, P. J. Protecting Groups; Thieme: Stuttgart,
1994; pp. 171–178; (b) Greene, T. W. In Protective
Groups in Organic Synthesis; 3rd ed.; Wuts, P. G. M.,
Ed.; John Wiley & Sons: New York, 1999; pp. 333–344.
2. Yadav, J. S.; Reddy, B. V. S.; Sushil Kumar Pandey.
Synlett 2001, 238.
3. Firouzabadi, H.; Iranpoor, N.; Karimi, B. Synthesis
17. Sasaki, M.; Inoue, M.; Takamatsu, K.; Tachibana, K. J.
1999, 58.
Org. Chem. 1999, 64, 9399.
4. Firouzabadi, H.; Karimi, B.; Eslami, S. Tetrahedron Lett.
1999, 40, 238.
5. Vijaya Anand, R.; Saranavan, P.; Singh, V. N. Synlett
18. Known thioacetalisation procedures are typically per-
formed at room temperature or reflux and never
employed temperatures lower than −10°C.
1999, 415.
19. A good conversion of cyclohexanone into thioketal 4a
was observed when using a catalytic amount of TMSOTf
(e.g. 61% yield with 10 mol%) under the same conditions,
suggesting a different mechanism than that expected
when starting from enol ethers.
6. (a) Samadjar, S.; Basu, M. K.; Becker, F. F.; Banik, B.
K. Tetrahedron Lett. 2001, 42, 4425; (b) Firouzabadi, H.;
Iranpoor, N.; Hazarkhani, H. J. Org. Chem. 2001, 66,
7527.
7. Firouzabadi, H.; Iranpoor, N.; Hazarkhani, H. Synlett
2001, 1641.
8. (a) Muthasamy, S.; Babu, S. A.; Gunanathan, C. Tetra-
hedron Lett. 2001, 42, 359; (b) Yadav, J. S.; Reddy, B. V.
S.; Sushil Kumar Pandey. Synth. Commun. 2002, 32, 715.
9. Gajare, A. S.; Shingare, M. S.; Bangar, B. P. J. Chem.
Res. (C) 1998, 452.
10. Jnaneshwara, G. K.; Barhate, N. B.; Sudalai, A.;
Despande, V. H.; Wakharkhar, R. D.; Gajare, A. S.;
Shingare, M. S.; Sukumar, R. J. Chem. Soc., Perkin
Trans. 1 1998, 965.
20. Poirier, J. M.; Dujardin, G. Tetrahedron Lett. 1987, 28,
3337.
21. Compounds 4a–c and 4g,h are known compounds. New
compounds gave satisfactory spectral and elemental data.
Selected data for 4d (C11H18O2S2) calcd: C, 53.82; H,
7.36; S, 26.03; found: C, 53.74; H, 7.66; S ,25.51. Com-
pound 4e (C7H10O3S2) calcd: C, 40.75; H, 4.88; S, 31.09;
found: C, 40.72; H, 4.95, S 30.76%; HRMS (EI): calcd
1
206.0071; found 206.0072; H NMR (400 MHz, CDCl3):
l=3.19 (s, 4H); 3.43 (d, J 6.9 Hz, 2H), 3.88 (s, 3H), 4.86
(t, J 6.9 Hz, 1H); 13C NMR (100 MHz, CDCl3): l=38.5
(2), 46.0, 49.7, 53.1, 160.5, 191.0.
11. Firouzabadi, H.; Iranpoor, N.; Karimi, B.; Hazarkhani,
H. Synlett 2000, 263.
Compound 4f (C8H12O3S2) calcd: C, 43.61; H, 5.48;
found: C, 43.86; H, 5.34%. HRMS (EI): calcd 220.0228;
found 220.0219; 1H NMR (400 MHz, CDCl3): l=1.89 (s,
3H), 3.36 (s, 4H); 3.57 (s, 2H), 3.88 (s, 3H); 13C NMR
(100 MHz, CDCl3): l=31.1, 39.7 (2), 53.0, 53.2, 61.4,
161.2, 190.5.
12. Ono, F.; Negoro, R.; Sato, T. Synlett 2001, 1581.
13. (a) Bell, V. L.; Holmes, A. B. Synth. Commun. 1982, 12,
326; (b) Boekelheide, M. Y. J. Org. Chem. 1964, 29, 1303.
14. Martel, A.; Leconte, S.; Dujardin, G.; Brown, E.;
Maisonneuve, V.; Retoux, R. Eur. J. Org. Chem. 2002,
514.
22. Evans, D. A.; Truesdale, L. K.; Grimm, K. G.; Nesbit, S.
L. J. Am. Chem. Soc. 1977, 99, 5009.
23. Performed by F. Gallier, Le Mans.
24. Tsunoda, T.; Suzuki, M.; Noyori, R. Tetrahedron Lett.
1980, 21, 1357.
25. Chan, T. H.; Brook, M. A.; Chaly, T. Synthesis 1983,
203.
15. Martel, A. Ph.D. Thesis, Le Mans, 2001.
16. Typical experimental procedure: To a stirred solution of
starting material (1 mmol) and 1,2-ethanedithiol (84 mL,
1 mmol) in CH2Cl2 (5 mL), TMSOTf (240 mL, 1.25
mmol) was added under an argon atmosphere at −78°C,
and the resulting mixture was stirred at −78°C. After
completion of the reaction (4 h) the mixture was treated
with sat. NaHCO3 (3 mL). The organic layer was sepa-
26. Kurihara, M.; Miyata, N. Chem. Lett. 1995, 263.