112
H. IMAISHI and M. PETKOVA-ANDONOVA
this newly reported plant P450 cytochrome, are not well
understood. Additional studies on this P450 cytochrome
are needed to help clarify the biological roles of fatty
acid hydroxylases in the regulation of growth and
development in higher plants.
M. H., Role of the peroxisome proliferator-activated
receptor in cytochrome P450 4A gene regulation.
FASEB J., 10, 1241–1248 (1996).
1
3) Ohkuma, M., Zimmer, T., Toshiya, I., Schunck, W. H.,
Ohta, A., and Takagi, M., Isozyme function of n-alkane-
inducible cytochrome P450 in Candida maltosa revealed
by sequential gene disruption. J. Biol. Chem., 273, 3948–
Acknowledgments
3
953 (1998).
1
4) Scheller, U., Zimmer, T., Kargel, E., and Schunck, W.
H., Characterization of the n-alkane and fatty acid
hydroxylating cytochrome P450 forms 52A3 and 53A4.
Arch. Biochem. Biophys., 328, 245–254 (1996).
We thank Dr. David R. Nelson of Committee for
Standardized Cytochrome P450 Nomenclature for assis-
tance in assigning the CYP76B91 sequence to the
cytochrome P450 gene family. We also thank Dr. Hideo
Ohkawa of Fukuyama University and Dr. Kiyoharu
Oono of Kobe University for their comments on this
study. This work was supported by Scientific Research
Grant no. 11760066 to H.I. from the Ministry of
Education of Japan.
15) Benveniste, I., Tijet, N., Adas, F., Philipps, G., Sala u¨ n, J.
P., and Durst, F., CYP86A1 from Arabidopsis thaliana
encodes a cytochrome P450-dependent fatty acid !-
hydroxylase. Biochem. Biophys. Res. Commun., 243,
6
88–693 (1998).
1
6) Benveniste, I., Sala u¨ n, J.-P., Simon, A., Reichhart, D.,
and Durst, F., Cytochrome P450 dependent !-hydrox-
ylation of lauric acid by microsomes from pea seedlings.
Plant Physiol., 70, 122–126 (1982).
References
1
7) Tijet, N., Helvig, C., Pinot, F., Le Bouquin, R., Lesot,
A., Durst, F., Sala u¨ n, J. P., and Benveniste, I., Functional
expression in yeast and characterization of a clofibrate-
inducible plant cytochrome P450 (CYP94A1) involved
in cutin monomers synthesis. Biochem. J., 332, 583–589
(1998).
1
)
)
Schuler, M. A., Plant cytochrome P450 monooxygenas-
es. Crit. Rev. Plant Sci., 15, 235–284 (1996).
Durst, F., Biochemistry and physiology of plant cyto-
chrome P450. In ‘‘Frontiers in Biotransformation’’ Vol. 4,
Chap. 7, eds. Ruckpaul, K., and Rein, H., Akademie
Verlag, Berlin (1991).
2
18) Pinot, F., Benveniste, I., Sala u¨ n, J.-P., Loreau, O., Noel,
J. P., Schreiber, L., and Durst, F., Production in vitro by
the cytochrome P450 CYP94A1 of major C18 cutin
monomers and potential messengers in plant-pathogen
interactions: enantioselectivity studies. Biochem. J., 342,
27–32 (2000).
19) Le Bouquin, R., Pinot, F., Benveniste, I., Sala u¨ n, J.-P.,
and Durst, F., Cloning and functional characterization of
CYP92A2, a medium chain fatty acid hydroxylase from
Vicia sativa. Biochem. Biophys. Res. Commun., 261,
156–162 (1999).
20) Le Bouquin, R., Skrabs, M., Kahn, R., Benveniste, I.,
Sala u¨ n, J.-P., Schreiber, L., Durst, F., and Pinot, F.,
CYP94A5, a new cytochrome P450 from Nicotiana
tabacum is able to catalyze the oxidation of fatty acids to
the !-alcohol and to the corresponding diacid. Eur. J.
Biochem., 268, 3083–3090 (2001).
21) Imaishi, H., Matsuo, S., Sawai, E., and Ohkawa, H.,
CYP78A1 preferentially expressed in developing inflor-
escence of Zea mays encoded a cytochrome P450-
dependent lauric acid 12-monooxygenase. Biosci. Bio-
technol. Biochem., 64, 1696–1701 (2000).
3
)
)
Poethig, R. S., Phase change and the regulation of shoot
morphogenesis in plants. Science, 250, 923–930 (1990).
Choe, S., Dilkes, B. P., Fujioka, S., Takatsuto, S.,
Sakurai, A., and Feldman, K. A., The DWF4 gene of
Arabidopsis encodes a cytochrome P450 that mediates
multiple 22alpha-hydroxylation steps in brassinosteroid
biosynthesis. Plant Cell, 10, 231–243 (1998).
4
5
)
Wellesen, K., Durst, F., Pinot, F., Benveniste, I.,
Nettesheim, K., Wisman, E., Steiner-Lange, S., Saedler,
H., and Yephremov, A., Functional analysis of the
LACERATA gene of Arabidopsis provides evidence for
different roles of fatty acid !-hydroxylation in develop-
ment. Proc. Natl. Acad. Sci. USA, 98, 9694–9699 (2001).
Zondlo, S., and Irish, V., CYP78A5 encodes a cyto-
chrome P450 that marks the shoot apical meristem
boundary in Arabidopsis. Plant J., 19, 259–268 (1999).
Kolattukudy, P. E., Biosynthesis of a hydroxy fatty acid
polymer, cutin: identification and biosynthesis of 16-
oxo-9- or 10-hydroxypalmitic acid, a novel compound in
Vicia faba. Biochemistry, 13, 1354–1363 (1974).
Soliday, C. L., and Kolattukudy, P. E., Biosynthesis of
cutin: !-Hydroxylation of fatty acids by a microsomal
preparation from germinating Vicia faba. Plant Physiol.,
6
)
)
7
8
)
)
22) Imaishi, H., Matsumoto, Y., Ishitobi, U., and Ohkawa,
H., Encoding of a cytochrome P450-dependent lauric
acid monooxygenase by CYP703A1 specifically ex-
pressed in the floral buds of Petunia hybrida. Biosci.
Biotechnol. Biochem., 63, 2082–2090 (1999).
59, 1116–1121 (1997).
9
Weber, H., Fatty acid-derived signals in plants. Trends
Plant Sci., 7, 217–227 (2002).
1
0) Laudert, D., Pfannschmidt, U., Lottspeich, F., Hollander-
Czytko, H., and Weiler, E. W., Cloning, molecular and
functional characterization of Arabidopsis thaliana al-
lene oxide synthase (CYP 74), the first enzyme of the
octadecanoid pathway to jasmonates. Plant Mol. Biol.,
23) Petkova-Andonova, M., Imaishi, H., and Ohkawa, H., A
novel cytochrome P450, CYP92B1, specifically ex-
pressed in petunia flower buds catalyzes the monoox-
idation of long-chain fatty acids. Biosci. Biotechnol.
Biochem., 66, 1819–1828 (2002).
3
1, 323–335 (1996).
24) Benveniste, I., Saito, T., Wang, Y., Kandel, S., Huang,
H., Pinot, F., Kahn, R. A., Salaun, J. P., and Shimoji, M.,
Evolutionary relationship and substrate specificity of
Arabidopsis thaliana fatty acid !-hydroxylase. Plant
1
1
1) Simpson, A., The cytochrome P450, 4 (CYP4) family.
Gen. Pharmacacol., 28, 331–359 (1997).
2) Johnson, E. F., Palmer, C. N. A., Griffin, K. J., and Hsu,