C O M M U N I C A T I O N S
Scheme 3
CTQ 2004-00409/BQU, FEDER support), the Junta de Andaluc ´ı a,
and cooperation project CSIC-CONACyT are gratefully acknowl-
edged. L.L.S. and P.L. thank the MEC for research grants.
Supporting Information Available: Synthetic procedures and
spectroscopic and analytical data for new compounds. This material is
available free of charge via the Internet at http://pubs.acs.org.
References
(
1) (a) Whiting, D. A. In ComprehensiVe Organic Chemistry; Barton, D., Ollis,
W. D., Eds.; Pergamon Press: Oxford, 1979; Vol. 1, Chapters 4.2 and
4
.5. (b) Wedemeyer, K.-F. In Methoden der Organischen Chemie/
(
Houben-Weyl); M u¨ ller, E., Bayer, O., Eds.; Thieme Verlag: Stuttgart,
976; Vol. VI/1c/1, pp 492-560.
2) 2,6-Dimethylphenyl phenyl ether transforms by means of a radical process
370 °C, 23 h) into 2-benzyl-6-methylphenol. See: Factor, A.; Finkbeiner,
1
(
(
(
H.; Jerussi, R. A.; White, D. M. J. Org. Chem. 1970, 35, 57.
3) (a) Van der Boom, M. E.; Liou, S.-Y.; Ben-David, Y.; Vigalok, A.;
Milstein, D. Angew. Chem., Int. Ed. Engl. 1997, 36, 625. (b) Van der
Boom, M. E.; Liou, S.-Y.; Ben-David, Y.; Shimon, L. J. W.; Milstein, D.
J. Am. Chem. Soc. 1998, 120, 6531.
(
4) (a) Chataui, N.; Tatamidani, H.; Ie, Y.; Kakinchi, F.; Murai, S. J. Am.
Chem. Soc. 2001, 123, 4849. (b) Grotjahn, D. B.; Lo, H. C. Organome-
tallics 1996, 15, 2860. (c) Bonnano, J. B.; Henry, T. P.; Neithamer, D.
R.; Wolczanski, P. T.; Lobkovsky, E. B. J. Am. Chem. Soc. 1996, 118,
5132. (d) Mayer, J. M. Polyhedron 1995, 14, 3273.
(5) Lin, Y.-S.; Yamamoto, A. In ActiVation of UnreactiVe Bonds and Organic
Synthesis; Murai, S., Ed; Springer: Berlin, 1999; pp 161-192.
(
6) (a) Arnold, J.; Tilley, T. D. J. Am. Chem. Soc. 1985, 107, 6409. (b)
Baumann, R.; Stumpf, R.; Davis, W. M.; Liang, L.-Ch.; Schrock, R. R.
J. Am. Chem. Soc. 1999, 121, 7822. (c) Tolman, C. A.; Ittel, S. D.; English,
A. D.; Jesson, J. P. J. Am. Chem. Soc. 1979, 101, 1742. (d) Yamamoto,
Y.; Sato, R.; Matsuo, F.; Sudoh, C.; Igoshi, T. Inorg. Chem. 1996, 35,
studies employing the 13C-enriched (ca. 45%) anisoles ArO CH
13
3
reveal that the label appears exclusively at the carbene carbon of
1
3
a and 4a ( JCH values of 154 (3a) and 159 Hz (4a) for their
2
329. (e) Empsall, H. D.; Hyde, E. M.; Jones, C. H.; Shaw, B. L. J. Chem.
IrdCH- functionalities).
Soc., Dalton Trans. 1974, 1980.
A definite mechanistic proposal for the conversion of 4a into
product 1a cannot be made at this stage. Scheme 3 shows a plausible
reaction pathway that implies an irreversible R-OAr elimination14
to yield a transient methylene species C that progresses by migratory
(7) (a) Pamplin, C. B.; Legzdins, P. Acc. Chem. Res. 2003, 36, 223. (b)
Labinger, J. A.; Bercaw, J. E. Nature 2002, 417, 507. (c) Brown, T.; Perutz,
R. N. Chem. Commun. 2002, 2749. (d) Dyker, G. Angew. Chem., Int. Ed.
1999, 38, 1698. (e) Yamamoto, A. AdV. Organomet. Chem. 1992, 34, 111.
(8) (a) Brunkan, N. M.; Brestensky, D. M.; Jones, W. D. J. Am. Chem. Soc.
2
004, 126, 3627. (b) Cabeza, J. A.; da Silva, I.; del Rio, I.; Mart ´ı nez-
insertion and â-H elimination. However, by this direct route, the
M e´ ndez, L.; Miguel, D.; Ribera, V. Angew. Chem., Int. Ed. 2004, 43,
3464. (c) Weissman, H.; Shimon, L. J. W.; Milstein, D. Organometallics
use of the 13C-enriched anisoles, ArO CH
13
3
, would give complexes
2004, 23, 3931. (d) Dzwiniel, T. L.; Stryker, J. M. J. Am. Chem. Soc.
1
labeled exclusively at the terminal alkene carbon atoms, instead
2004, 126, 9184. (e) Grotjahn, D. B.; Hoerter, J. M. J. Am. Chem. Soc.
2004, 126, 8866.
1
3
of the experimentally observed C distribution across the two
olefinic sites (favoring the terminal alkene carbon, regardless of
the reaction time, by ca. 70 and 55% for 1a and 1b, respectively).
To account for this fact, partial equilibration of B with a cyclo-
hexadienone intermediate D15 may be suggested. As indicated by
a reviewer, 4a could also evolve by migration of the benzylic carbon
onto the carbene carbon, followed by R-OAr elimination within
the resulting benzodihydrofuran intermediate, so that the distribution
of the 13C label would occur by rearrangement of a carbenium
zwitterion. Theoretical calculations, presently underway, could help
to clarify these mechanistic aspects. It is worth pointing out that
(
9) (a) Roggenbuck, J.; Tiemann, M. J. Am. Chem. Soc. 2005, 127, 1096. (b)
Hartwig, J. F.; Cook, K. S.; Hapke, M.; Incarvito, C. D.; Fan, Y.; Webster,
C. E.; Hall, M. B. J. Am. Chem. Soc. 2005, 127, 2538. (c) Jin, X.; Legzdins,
P.; Buschhaus, M. S. A. J. Am. Chem. Soc. 2005, 127, 6928. (d) Kamijo,
S.; Dudley, G. B. J. Am. Chem. Soc. 2005, 127, 5028.
(10) Guti e´ rrez-Puebla, E.; Monge, A.; Nicasio, M. C.; P e´ rez, P. J.; Poveda,
M. L.; Carmona, E. Chem. Eur. J. 1998, 4, 2225.
(
11) (a) Paneque, M.; Poveda, M. L.; Santos, L. L.; Carmona, E.; Lled o´ s, A.;
Ujaque, G.; Mereiter, K. Angew. Chem., Int. Ed. 2004, 43, 3708. (b)
Guti e´ rrez-Puebla, E.; Monge, A.; Paneque, M.; Poveda, M. L.; Taboada,
S.; Trujillo, M.; Carmona, E. J. Am. Chem. Soc. 1999, 121, 346.
(12) (a) Carmona, E.; Paneque, M.; Poveda, M. L. Dalton Trans. 2003, 4022.
b) Clot, E.; Chen, J.; Lee, D.-H.; Sung, S. Y.; Appelhans, L. N.; Faller,
(
J. W.; Crabtree, R. H.; Eisenstein, O. J. Am. Chem. Soc. 2004, 126, 8795.
(13) (a) Lee, D.-H.; Chen, J.; Faller, J. W.; Crabtree, R. H. Chem. Commun.
2001, 213. (b) Coalter, J. N., III; Huffman, J. C.; Caulton, K. G. Chem.
Commun. 2001, 1158.
1
3
an alternative explanation for the C scrambling implying reversible
9
a,c,d,17,18
â-aryl elimination
from E to F as the only cause of the
(14) (a) Thorn, D. L. Organometallics 1982, 1, 197. (b) Thorn, D. L.; Tulip,
T. H. Organometallics 1982, 1, 1580. (c) Calabrese, J. C.; Roe, D. C.;
Thorn, D. L.; Tulip, T. H. Organometallics 1984, 3, 1223.
1
3C scrambling in 1 can also be discarded, as fast rotation19 in the
putative ethylene species F would result in the even distribution of
the 13C label in the alkene sites of 1.
In summary, this work demonstrates that late transition metals
are able to induce unprecedented reactivity in methyl aromatic ethers
that have their ortho positions blocked by Me substituents. Multiple
C-H bond activations12 as well as reversible and irreversible C-O
and C-C bond cleavage and forming reactions have been ascer-
tained. Extension of these studies to other alkyl (and allyl) aryl
ethers, with and without ortho substituents, appears feasible and is
presently being pursued.
(15) Species of type D are organometallic derivatives of cyclohexadienones.
The latter are intermediates or products of many important rearrangements
of phenols and aromatic ethers and esters, including the photo-Fries
rearrangement, the Birch reduction, the Wessely oxidation, or, notably,
1
,16
the aromatic Claisen rearrangement.
(
16) Smith, M. B.; March, J. AdVanced Organic Chemistry, 5th ed.; John Wiley
and Sons Inc.: New York, 2001; Chapter 18.
(17) (a) C a´ mpora, J.; Guti e´ rrez-Puebla, E.; L o´ pez, J. A.; Monge, A.; Palma,
P.; del Rio, D.; Carmona, E. Angew. Chem., Int. Ed. 2001, 40, 3641. (b)
Catellani, M.; Frignani, F.; Rangoni, A. Angew. Chem., Int. Ed. Engl.
1
997, 36, 119.
18) Hartwig, J. F.; Bergman, R. G.; Andersen, R. A. Organometallics 1991,
0, 3344.
(
1
(19) Alvarado, Y.; Boutry, O.; Guti e´ rrez, E.; Monge, A.; Nicasio, M. C.;
Poveda, M. L.; P e´ rez, P. J.; Ruiz, C.; Bianchini, C.; Carmona, E. Chem.
Eur. J. 1997, 3, 860.
Acknowledgment. Dedicated to Prof. Victor Riera on the
occasion of his retirement. Financial support from the DGI (Project
JA0586790
J. AM. CHEM. SOC.
9
VOL. 128, NO. 11, 2006 3513