M. González et al. / Reactive & Functional Polymers 72 (2012) 107–113
113
vation at 0 °C) [6,27]. Using a reported assay, the yield of the
activation reaction was 98% [28].
acknowledges having been granted a fellowship from CONICET-
CARBONFE.
IFN
tion conditions (sodium borate buffer, pH 8, at 4 °C using 5-fold
excess of mPEG lys-OSu) [6,27]. SE-HPLC analysis of the crude
pegylation reaction indicated 35% of monopegylated protein, 2.5%
of oligomer species, and 62.5% of unmodified interferon (see
2
a-2a was pegylated with mPEG lys-OSu under known reac-
References
2
[
[
[
1] G. Pasut, F.M. Veronese, Adv. Drug Deliv. Rev. 61 (2009) 1177–1188.
2] S. Jevsevar, M. Kunstelj, V. Gaberc Porekar, Biotechnol. J. 5 (2010) 113–128.
3] J.S. Kang, P.P. DeLuca, K.C. Lee, Expert Opin. Emerg. Drugs 14 (2009) 363–380.
Fig. 8a) using commercial mPEG
After quenching, the crude pegylation reaction was diluted and
immediately loaded to Fractogel EMD COO (M) column for purifi-
2
lys-IFN
a
-2a as reference.
[4] F.M. Veronese, P. Caliceti, O. Schiavon, J. Bioact. Compat. Polym. 12 (1997) 196–
07.
[5] C. Monfardini, O. Schiavon, P. Caliceti, M. Morpurgo, J.M. Harris, F. Veronese,
Bioconjugate Chem. 6 (1995) 62–69.
2
ꢀ
cation purposes (see Section 2 for details). SDS–PAGE analyses
[6] P. Bailon, A. Palleroni, C.A. Schaffer, C.L. Spence, W.J. Fung, J.E. Porter, G.K.
Ehrlich, W. Pan, Z.X. Xu, M.W. Modi, A. Farid, W. Berthold, Bioconjugate Chem.
(
2
stained with Coomasie brilliant blue, and BaCl /I; using a com-
12 (2001) 195–202.
mercial conjugate reference) were used in the different stages of
the process to confirm the presence of the conjugate, and to
evaluate the chromatographic purification (Fig. 8b and c). Concen-
tration of proteins was determined by UV absorbance at 280 nm,
and by Lowry protein assay. Similar to other reported methodolo-
gies, the chromatographic yield was 72%, and the conjugate
[
7] X. Bian, F. Shen, Y. Chen, B. Wang, M. Deng, Y. Meng, Biotechnol. Lett. (2010) 1–
8.
[8] A. Basu, K. Yang, M. Wang, S. Liu, R. Chintala, T. Palm, H. Zhao, P. Peng, D. Wu, Z.
Zhang, J. Hua, M.-C. Hsieh, J. Zhou, G. Petti, X. Li, A. Janjua, M. Mendez, J. Liu, C.
Longley, Z. Zhang, M. Mehlig, V. Borowski, M. Viswanathan, D. Filpula,
Bioconjugate Chem. 17 (2006) 618–630.
[9] Y. Nojima, K. Iguchi, Y. Suzuki, A. Sato, Biol. Pharm. Bull. 32 (2009) 523–526.
10] Y.J. Wang, S.J. Hao, Y.D. Liu, T. Hu, G.F. Zhang, X. Zhang, Q.S. Qi, G.H. Ma, Z.G. Su,
J. Control. Release 145 (2010) 306–313.
[
[
2
mPEG lys-IFN a-2a was obtained in a 26% isolated yield.
11] A. Nesbitt, G. Fossati, M. Bergin, P. Stephens, S. Stephens, R. Foulkes, D. Brown,
M. Robinson, T. Bourne, Inflamm. Bowel Dis. 13 (2007) 1323–1332.
4
. Conclusions
mPEG lys 1 has been one of the most studied branched PEGs for
[12] M. Li, Y. Chen, Z. Liu, F. Shen, X. Bian, Y. Meng, Acta Biochim. Biophys. Sin. 41
2009) 792–799.
(
[
13] A. Furin, A. Guiotto, F. Baccichetti, G. Pasut, C. Deuschel, R. Bertani, F.M.
Veronese, Eur. J. Med. Chem. 38 (2003) 739–749.
2
the pegylation of different active biomolecules. Despite its proven
utility, few methods for its synthesis have been reported. Taking
advantage of the increased reactivity of mPEG-alkoxycarbonylimi-
dazolium iodide 2d, compared with that of the parent alkoxycarb-
onylimidazole 2c, a new synthesis strategy and a purification
[14] A. Guiotto, M. Pozzobon, C. Sanavio, O. Schiavon, P. Orsolinini, F.M. Veronese,
Bioorgan. Med. Chem. Lett. 12 (2002) 177–180.
[
15] S. Zalipsky, R. Seltzer, S. Menon-Rudolph, Biotechnol. Appl. Biochem. 15 (1992)
00–114.
16] T. Miron, M. Wilchek, Bioconjugate Chem. 4 (1993) 568–569.
1
[
[17] N. Yamasaki, A. Matsuo, H. Isobre, Agr. Biol. Chem. 52 (1988) 2125–2127.
[
[
[
18] D.B. Wu, H. Zhao, Process for the Preparation of Polymer Conjugates, U.S.
365127, 2008.
19] A. Martinez, R.B. Greenwald, Non-Antigenic Branched Polymer Conjugates, U.S.
5643575, 1997.
20] M.J. Harris, F.M. Veronese, P. Caliceti, O. Schiavon, Multiarmed,
Monofunctional, Polymer for Coupling to Molecules and Surfaces, U.S.
2
protocol for the preparation of mPEG lys 1 (40 kDa) were devel-
7
oped (41% isolated yield). The synthetic method involves only
three reaction steps under mild conditions, using standard chemi-
cals and experimental set ups. Moreover, the use of toxic or dan-
gerous reagents, such as phosgene or triphosgene is avoided. In
this regard, the key functionalized mPEG 2d proved to be a useful
alternative to the well-known mPEG-N-hydroxysuccinimidyl or p-
nitrophenyl carbonates. Furthermore, the use of a silylated form of
l-lysine suppresses the need for the standard hydrolysis step after
coupling of the mPEG chains, as is usually required with l-lysine
ethyl ester.
5932462, 1999.
[21] M.J. Harris, F.M. Veronese, P. Caliceti, O. Schiavon, Method for Purifying a
Branched Water-Soluble Polymer, U.S. 7419600, 2008.
[
22] C.O. Beauchamp, S.L. Gonias, D.P. Menapace, S.V. Pizzo, Anal. Biochem. 131
1983) 25–33.
(
[23] J. Brygier, M. Gelbcke, C. Guermant, M. Nijs, D. Baeyens-Volant, Y. Looze, Appl.
Biochem. Biotechnol. 42 (1993) 127–135.
[
24] J.A. Grzyb, M. Shen, C. Yoshina-Ishii, W. Chi, R.S. Brown, R.A. Batey,
Tetrahedron 61 (2005) 7153–7175. and references cited therein.
The two-step purification procedure described before involves
the initial enrichment of the required product by a simple ultrafil-
tration process that would increase the life of the chromatographic
matrix (HIC), at the same time that it allows the purification of 2 g
[25] C.S. King, W.W. Hartman, Org. Synth., Coll. 2 (1943) 399–400.
[26] U.K. Laemmli, Nature 227 (1970) 680–685.
[
27] J. Ramon, V. Saez, R. Baez, R. Aldana, E. Hardy, Pharm. Res. 22 (2005) 1375–
387.
28] H.J. Niemczyk, S.D. Van Arnum, Anal. Chim. Acta 615 (2008) 88–95.
1
[
Ò
2
of enriched mPEG lys per run under standard scale set up and with
[29] Pegasys was Used as Reference.
[
[
[
30] W.P. Jencks, D.G. Oakenfull, K. Salvesen, J. Am. Chem. Soc. 93 (1971) 188–194.
31] A.K. Saha, H. Rapoport, P. Schultz, J. Am. Chem. Soc. 111 (1989) 4856–4859.
32] G.P. Beauregard, Y.-H. Hu, D.W. Grainger, S.P. James, J. Appl. Polym. Sci. 79
(2001) 2264–2271.
excellent resolution.
2
The performance of mPEG lys 1 was evaluated by its conversion
to mPEG
lation of IFN
2
lys-OSu by diimide activation and by the successful pegy-
-2a using this reactive ester.
[
[
[
33] M. Kusterle, S. Jevševar, V.G. Porekar, Acta Chim. Slov. 55 (2008) 594–601.
34] J. Maxfield, I.W. Shepherd, Polymer 16 (1975) 505–509.
35] M. Wang, A. Basu, T. Palm, J. Hua, S. Youngster, L. Hwang, H.-C. Liu, X. Li, P.
Peng, Y. Zhang, H. Zhao, Z. Zhang, C. Longley, M. Mehlig, V. Borowski, P. Sai, M.
Viswanathan, E. Jang, G. Petti, S. Liu, K. Yang, D. Filpula, Bioconjugate Chem. 17
a
Acknowledgments
(
2006) 1447–1459.
[
[
36] J.R. Molek, A.L. Zydney, Biotechnol. Prog. 23 (2007) 1417–1424.
37] T. Hu, B.N. Manjula, D. Li, M. Brenowitz, S.A. Acharya, Biochem. J. 402 (2007)
The authors wish to express their gratitude to Agencia Nacional
de Promoción Científica y Tecnológica (ANPCyT), to Consejo Nacion-
al de Investigaciones Científicas y Técnicas (CONICET), to Universi-
dad Nacional del Litoral (UNL) of Argentina and to CARBONFE, for
the financial support given to this contribution. M. González deeply
1
43–151.
[38] J.R. Molek, A.L. Zydney, Biotechnol. Bioeng. 95 (2006) 474–482.
39] D.R. Latulippe, J.R. Molek, A.L. Zydney, Ind. Eng. Chem. Res. 48 (2008) 2395–
403.
[
2