F.-D. Mai et al. / Materials Research Bulletin 47 (2012) 167–171
171
4. Conclusions
In this work, we have successfully developed a new electro-
chemical pathway to prepare Pt-containing complexes with high
purity from pure bulk Pt substrates. Pt-containing complexes can
be efficiently prepared by using square-wave ORCs methods in
0.1 N HCl under a frequency of 8 Hz and a step potential of 6.3 mV.
This method can overcome the general issue of impurity in
synthesizing Pt NPs from precursors of commercial Pt salts. The
concentrations of the prepared Pt-containing complexes and the
synthesized elemental Pt NPs in solutions are ca. 65 and 60 ppm,
respectively. Meanwhile, concentrations of other heavy metals of
Hg and Cr in 65 ppm Pt complexes-containing solution are just
a
b
c
0.65 and 0.78 ppb, respectively. Also, the particle sizes of the
synthesized Pt(1 1 1) NPs are smaller than 5 nm.
Acknowledgment
The authors thank the National Science Council of the Republic
of China (NSC-97-2622-E-238-008-CC3) for its financial support.
66.0
68.0
70.0
72.0
74.0
76.0
78.0
80.0
Binding energy / eV
References
Fig. 8. HRXPS Pt 4f7/2–5/2 core-level spectra of different platinum: (a) positively
charged Pt-containing complexes after electrochemical treatment; (b) synthesized
Pt(0) nanoparticles; (c) polished Pt substrate before electrochemical treatment.
[1] Y.T. Li, C.W. Li, W.C. Sung, S.H. Chen, Anal. Chem. 81 (2009) 4076–4081.
[
[
[
[
[
2] S. Huang, Y. Chen, Nano Lett. 8 (2008) 2829–2833.
3] S. Kim, C. Jung, J. Kim, C.K. Rhee, S. Choi, T. Lim, Langmuir 26 (2010) 4497–4505.
4] C. Wang, H. Daimon, S. Sun, Nano Lett. 9 (2009) 1493–1496.
5] Y. Sun, B. Mayers, Y. Xia, Nano Lett. 2 (2002) 481–485.
6] A. Maljusch, T.C. Nagaiah, S. Schwamborn, M. Bron, W. Schuhmann, Anal. Chem.
dimensional fringe lattice due to moir e´ interference. It indicates
that these NPs are crystalline [35]. Also (1 1 1) lattice fringes with
82 (2010) 1890–1896.
[7] S. Anandan, F. Grieser, M. Ashokkumar, J. Phys. Chem. C 112 (2008) 15102–15105.
˚
an interplanar spacing of 2.2 A were measured for all lattice planes.
[8] Y.C. Liu, L.H. Lin, W.H. Chiu, J. Phys. Chem. B 108 (2004) 19237–19240.
This is reasonable since the low index plane (1 1 1) has the lowest
surface energy [36]. Further EDX spectrum of HRTEM of prepared
Pt NPs, as shown in Fig. 7, also confirms the successful fabrication
of Pt NPs from precursors of Pt-containing complexes prepared by
square-wave ORCs methods proposed in this work.
Fig. 8 displays the HRXPS Pt 4f7/2–5/2 core-level spectra of the
prepared Pt-containing complexes, the synthesized Pt NPs and a
polished Pt substrate for comparison. As shown in spectra b
[9] S. Hashimoto, T. Uwada, H. Masuhara, T. Asahi, J. Phys. Chem. C 112 (2008) 15089–
15093.
[
[
10] H. Zeng, J. Li, Z.L. Wang, J.P. Liu, S. Sun, Nano Lett. 4 (2004) 187–190.
11] T.A. Bendikov, A. Rabinkov, T. Karakouz, A. Vaskevich, I. Rubinstein, Anal. Chem.
80 (2008) 7487–7498.
12] J.M. Delgado, A. Rodes, J.M. Orts, J. Phys. Chem. C 111 (2007) 14476–14483.
13] K. Kim, J. Kim, S. Cha, J. Lee, J. Am. Chem. Soc. 131 (2009) 7482–7483.
14] M. Shoji, K. Miyajima, F. Mafun e´ , J. Phys. Chem. C 112 (2008) 1929–1932.
[15] K. Esumi, T. Hosoya, A. Suzuki, K. Torigoe, Langmuir 16 (2000) 2978–2980.
16] H. Tsunoyama, N. Ichikuni, T. Tsukuda, Langmuir 24 (2008) 11327–11330.
17] H. Zhang, K.H. Fung, J. Hartmann, C.T. Chan, D. Wang, J. Phys. Chem. C 112 (2008)
[
[
[
[
[
(
representing Pt NPs) and c (representing a polished Pt
16830–16839.
substrate), the doublet peaks located at 70.9 and 74.3 eV can
be assigned to Pt(0) according to a previous report [3] and a XPS
handbook. Due to these two similar spectra, the Pt NPs prepared
by chemical reduction can be confirmed to be metallic Pt. As
comparing spectrum a with doublet peaks located at 71.5 and
[18] N.R. Jana, N. Erathodiyil, J. Jiang, J.Y. Ying, Langmuir 26 (2010) 6503–6507.
[19] Q. Zhang, C.Z. Huang, J. Ling, Y.F. Li, J. Phys. Chem. B 112 (2008) 16990–16994.
[20] B. Pietrobon, M. McEachran, V. Kitaev, ACS Nano 3 (2009) 21–26.
[21] Z. Peng, J. Wu, H. Yang, Chem. Mater. 22 (2010) 1098–1106.
[22] C.J. Chen, B. Lim, E.P. Lee, Y.N. Xia, Nano Today 4 (2009) 81.
[
23] Y.H. Ng, S. Ikeda, Y. Morita, T. Harada, K. Ikeue, M. Matsumura, J. Phys. Chem. C 113
2009) 12799–12805.
(
7
4.9 eV (representing the positively charged Pt-containing
[
24] M. Sanles-Sobrido, M.A. Correa-Duarte, S. Carregal-Romero, B. Rodriguez-Gonzalez,
R.A.Alvarez-Puebla, P. Herves, L.M. Liz-Marzan, Chem. Mater.21(2009)1531–1535.
25] C. Hsu, H. Liao, P. Kuo, J. Phys. Chem. C 114 (2010) 7933–7939.
complexes before reduction), with spectrum b (representing
the metallic Pt NPs), it is found that there are extra oxidized
components of Pt shown in the higher binding energy side. Thus,
the Pt in the Pt-containing complexes can be confirmed to be
positively charged Pt according to a previous report [3] and a
XPS handbook. HRXPS experiment also reveals that negatively
charged Cl is present in the Pt-containing complexes. Thus, the
prepared Pt-containing complexes are composed of positively
charged Pt and negatively charged Cl. Moreover, the Pt-
[
[
[
26] W. Zhang, M.K.S. Li, R. Wang, P. Yue, P. Gao, Langmuir 25 (2009) 8226–8234.
27] P. Mukherjee, A.K. Nandi, Langmuir 26 (2010) 2785–2790.
[28] R.K. Chang, B.L. Laube, CRC Crit. Rev. Solid State Mater. Sci. 12 (1984) 1–74.
[29] Y.C. Liu, H.H. Peng, J. Phys. Chem. B 108 (2004) 16654–16658.
[30] K.H. Yang, Y.C. Liu, T.C. Hsu, M.Y. Juang, Mater. Lett. 64 (2010) 497–499.
[31] Z.Q. Tian, B. Ren, B.W. Mao, J. Phys. Chem. B 101 (1997) 1338–1346.
[32] S. Zhao, S. Chen, S. Wang, D. Li, H. Ma, Langmuir 18 (2002) 3315–3318.
[33] Y.C. Liu, Y.C. Yu, S.F. Sheu, J. Mater. Chem. 10 (2006) 3546–3551.
[
[
34] T. Teranishi,M. Hosoe,T. Tanaka, M. Miyake, J. Phys. Chem. B 103(1999) 3818–3827.
35] K.V. Sarathy, G. Raina, R.T. Yadav, G.U. Kulkarni, C.N.R. Rao, J. Phys. Chem. B 101
2
+
containing complex can be assigned to PtCl
to that of commercial Pt salt of H PtCl
Á6H
6
, which is similar
2
O.
(1997) 9876–9880.
2
6
[36] Y.C. Liu, Langmuir 18 (2002) 174–181.