10.1002/chem.201700639
Chemistry - A European Journal
FULL PAPER
Signals are considered to be impurities, when the signal intensity does
not depend on the pressure - and therefore the concentration - of the
molecular inlet beam, which means that those compounds are in the
detector chamber and do not influence the reaction. Additionally,
experiments with varying sample concentrations (backing pressure of the
molecular beam) were performed in order to rule out possible changes in
selectivity due to bimolecular collisions. In the tested range limited by the
vapor pressure of the model compound no changes were observed.
[9]
Z. Ma, E. Troussard, J. A. van Bokhoven, Appl. Catal. A Gen. 2012,
423–424, 130–136.
[10]
[11]
[12]
[13]
[14]
D. J. Mihalcik, C. A. Mullen, A. A. Boateng, J. Anal. Appl. Pyrolysis
2011, 92, 224–232.
M. Zhang, F. L. P. Resende, A. Moutsoglou, D. E. Raynie, J. Anal.
Appl. Pyrolysis 2012, 98, 65–71.
D. M. Alonso, J. Q. Bond, J. A. Dumesic, Green Chem. 2010, 12,
1493–1513.
Py-GC/MS
C. Bährle, T. U. Nick, M. Bennati, G. Jeschke, F. Vogel, J. Phys.
Chem. A 2015, 119, 6475–6482.
Ambient pressure pyrolysis of the model compounds was performed in a
platinum coil pyrolyzer (5150, CDS Analytical) consisting of an open-
ended quartz reactor packed with loose quartz-wool in an helium carrier
gas stream. The model compound (1-2 μL) was pyrolyzed at a heating
rate of 20 °C/ms, and was then kept at the final temperature for 1 min.
The pyrolysis products were injected into an Agilent 7890A GC with an
Agilent 5975C MS system through the pyrolysis interface and transfer
line at 300 °C. The GC also has a thermal conductivity detector (TCD),
which is calibrated for the most predominant gases (CO, CO2, CH4 etc.).
The condensable fraction injected into the GC/MS system was
characterized according to the NIST08 mass spectrum library. The stated
selectivity was based on the percentage of the peak area and the
conversion was calculated by the integrated peak area. Variation of the
sample size at 900 °C determined the standard deviation of each product.
All reactions were at least performed in duplicate and reproduced within
95 %.
A. Demirbas, Energy Sources, Part A Recover. Util. Environ. Eff.
2009, 31, 1186–1193.
[15]
[16]
C. Zhao, J. A. Lercher, Angew. Chemie 2012, 124, 6037–6042.
A. B. Lovell, K. Brezinsky, I. Glassman, Int. J. Chem. Kinet. 1989,
21, 547–560.
[17]
[18]
A. M. Scheer, C. Mukarakate, D. J. Robichaud, M. R. Nimlos, H.-H.
Carstensen, G. B. Ellison, J. Chem. Phys. 2012, 136, 44309.
E. Barker Hemings, G. Bozzano, M. Dente, E. Ranzi, Chem. Eng.
Trans. 2011, 24, 61–66.
[19]
[20]
M. M. Suryan, J. Am. Chem. Soc. 1989, 111, 1423–1429.
A. V. Friderichsen, E. J. Shin, R. J. Evans, M. R. Nimlos, D. C.
Dayton, G. B. Ellison, Fuel 2001, 80, 1747–1755.
P. F. Britt, A. C. Buchanan, M. J. Cooney, D. R. Martineau, J. Org.
Chem. 2000, 65, 1376–89.
[21]
[22]
Gaussian calculations
P. F. Britt, A. C. Buchanan, K. B. Thomas, S.-K. Lee, J. Anal. Appl.
Pyrolysis 1995, 33, 1–19.
Gaussian 09 was utilized, applying the B3LYP functional and the 6-
311++G(d,p) basis set to calculate the equilibrium geometry and force
constant matrixes[55]a, which were used to compute Franck-Condon
factors with the ezSpectrum.OSX program.[55]a,b To the calculate the
ionization energies and the relative energy differences of unknown
[23]
[24]
[25]
M. Koyama, Bioresour. Technol. 1993, 44, 209–215.
M. Brebu, C. Vasile, Cellul. Chem. Technol. 2010, 44, 353–363.
A. Maccoll, S. W. Ramsay, R. F. Laboratories, W. C. I. London,
Chem. Rev. 1969, 69, 33.
intermediates the CBS-QB3 composite method was selected.[56,57]
.
[26]
H. Kwart, S. F. Sarner, J. Slutsky, R. December, J. Am. Chem. Soc.
1973, 95, 5234–5242.
[27]
[28]
M. T. Klein, P. S. Virk, Ind. Eng. Chem. Fundam. 1983, 22, 35–45.
M. W. Jarvis, J. W. Daily, H.-H. Carstensen, A. M. Dean, S. Sharma,
D. C. Dayton, D. J. Robichaud, M. R. Nimlos, J. Phys. Chem. A
2011, 115, 428–438.
Acknowledgements
The authors thank the Swiss National Science Foundation for
finical support (NRP66, no. 406640-136892). The experiments
were performed at the VUV beamline of the Swiss Light Source
at the Paul Scherrer Institute (PSI). The work was supported
financially by the Swiss Federal Office for Energy (BFE Contract
Number SI/501269-01). Calculations were performed at the HPC
cluster Brutus at ETH.
[29]
[30]
[31]
B. Saake, R. Lehen, Ulmann’s Encycl. 2012, 21–36.
A. Beste, A. C. Buchanan, J. Phys. Chem. A 2012, 116, 12242–8.
A. M. Scheer, C. Mukarakate, D. J. Robichaud, M. R. Nimlos, G. B.
Ellison, J. Phys. Chem. A 2011, 115, 13381–9.
V. B. F. Custodis, P. Hemberger, Z. Ma, J. A. van Bokhoven, J.
Phys. Chem. B 2014, 118, 8524–8531.
[32]
[33]
[34]
[35]
[36]
R. Parthasarathi, R. A. Romero, A. Redondo, S. Gnanakaran, J.
Phys. Chem. Lett. 2011, 2, 2660–2666.
Keywords: lignin • fast pyrolysis • model compounds • radical
mechanism • TPES iPEPICO
C. Bährle, V. Custodis, G. Jeschke, J. A. van Bokhoven, F. Vogel,
ChemSusChem 2016, 9, 2397–2403.
[1]
J. Jönsson, K. Pettersson, T. Berntsson, S. Harvey, Int. J. Energy
Res. 2013, 37, 1017–1035.
C. Bährle, V. Custodis, G. Jeschke, J. A. van Bokhoven, F. Vogel,
ChemSusChem 2014, 7, 2022–9.
[2]
[3]
[4]
[5]
[6]
A. V. Bridgwater, Biomass and Bioenergy 2012, 38, 68–94.
T. Dickerson, J. Soria, Energies 2013, 6, 514–538.
K. Freudenberg, H. Richtzenhain, Angew. Chemie 1939, 1–5.
O. Faix, Holzforschung 1991, 45, Suppl. 21-27.
V. B. F. Custodis, C. Bährle, F. Vogel, J. a. van Bokhoven, J. Anal.
Appl. Pyrolysis 2015, 115, 214–223.
D. J. Robichaud, A. M. Scheer, C. Mukarakate, T. K. Ormond, G. T.
Buckingham, G. B. Ellison, M. R. Nimlos, J. Chem. Phys. 2014, 140,
234302.
[37]
[38]
[39]
[40]
A. Bodi, P. Hemberger, T. Gerber, B. Sztáray, Rev. Sci. Instrum.
2012, 83, 83105.
F. P. Colonna, G. Distefano, V. Galasso, K. J. Irgolic, C. E. King, G.
C. Pappalardo, J. Organomet. Chem. 1978, 146, 235–244.
E. Dorrestijn, L. J. J. Laarhoven, I. W. C. E. Arends, P. Mulder, J.
Anal. Appl. Pyrolysis 2000, 54, 153–192.
[7]
[8]
T. P. Vispute, H. Zhang, A. Sanna, R. Xiao, G. W. Huber, Science
2010, 330, 1222–7.
T. R. Carlson, G. A. Tompsett, W. C. Conner, G. W. Huber, Top.
Catal. 2009, 52, 241–252.
P. Hemberger, G. da Silva, A. J. Trevitt, T. Gerber, A. Bodi, Phys.
This article is protected by copyright. All rights reserved.