Journal of the American Chemical Society
Article
Remediations with a Visible LED or Even Sunlight. Chem. - Eur. J.
2018, 24, 17557−17567.
(14) Haring, M.; Perez-Ruiz, R.; Jacobi von Wangelin, A.; Díaz, D.
D. Intragel Photoreduction of Aryl Halides by Green-to-Blue
Upconversion under Aerobic Conditions. Chem. Commun. 2015, 51,
16848−16851.
(15) Aguirre-Soto, A.; Kaastrup, K.; Kim, S.; Ugo-Beke, K.; Sikes, H.
D. Excitation of Metastable Intermediates in Organic Photoredox
Catalysis: Z-Scheme Approach Decreases Catalyst Inactivation. ACS
Catal. 2018, 8, 6394−6400.
General experimental details, additional results and
control experiments, further laser flash photolysis data,
and application-related details (PDF)
́
̈
AUTHOR INFORMATION
■
Corresponding Authors
ORCID
́
(16) Lopez-Calixto, C. G.; Liras, M.; de la Pena O’Shea, V. A.;
̃
́
Perez-Ruiz, R. Synchronized Biphotonic Process Triggering C-C
Coupling Catalytic Reactions. Appl. Catal., B 2018, 237, 18−23.
(17) Slanina, T.; Oberschmid, T. Rhodamine 6G Radical: A Spectro
(Fluoro) Electrochemical and Transient Spectroscopic Study.
ChemCatChem 2018, 10, 4182−4190.
Notes
The authors declare no competing financial interest.
(18) Marchini, M.; Gualandi, A.; Mengozzi, L.; Franchi, P.; Lucarini,
M.; Cozzi, P. G.; Balzani, V.; Ceroni, P. Mechanistic Insights into
Two-Photon-Driven Photocatalysis in Organic Synthesis. Phys. Chem.
Chem. Phys. 2018, 20, 8071−8076.
(19) Kerzig, C.; Wenger, O. S. Sensitized Triplet−Triplet
Annihilation Upconversion in Water and Its Application to Photo-
chemical Transformations. Chem. Sci. 2018, 9, 6670−6678.
(20) Kobayashi, Y.; Mutoh, K.; Abe, J. Stepwise Two-Photon
Absorption Processes Utilizing Photochromic Reactions. J. Photochem.
Photobiol., C 2018, 34, 2−28.
(21) Seegerer, A.; Nitschke, P.; Gschwind, R. M. Combined In Situ
Illumination-NMR-UV/Vis Spectroscopy: A New Mechanistic Tool
in Photochemistry. Angew. Chem., Int. Ed. 2018, 57, 7493−7497.
(22) Christensen, J. A.; Phelan, B. T.; Chaudhuri, S.; Acharya, A.;
Batista, V. S.; Wasielewski, M. R. Phenothiazine Radical Cation
Excited States as Super-Oxidants for Energy-Demanding Reactions. J.
Am. Chem. Soc. 2018, 140, 5290−5299.
(23) Fujitsuka, M.; Majima, T. Reaction Dynamics of Excited
Radical Ions Revealed by Femtosecond Laser Flash Photolysis. J.
Photochem. Photobiol., C 2018, 35, 25−37.
(24) Hu, A.; Chen, Y.; Guo, J.-J.; Yu, N.; An, Q.; Zuo, Z. Cerium-
Catalyzed Formal Cycloaddition of Cycloalkanols with Alkenes
through Dual Photoexcitation. J. Am. Chem. Soc. 2018, 140,
13580−13585.
(25) Rauch, M. P.; Knowles, R. R. Applications and Prospects for
Triplet−Triplet Annihilation Photon Upconversion. Chimia 2018, 72,
501−507.
(26) Buxton, G. V.; Greenstock, C. L.; Helman, W. P.; Ross, A. B.
Critical Review of Rate Constants for Reactions of Hydrated
Electrons, Hydrogen Atoms and Hydroxyl Radicals in Aqueous
Solution. J. Phys. Chem. Ref. Data 1988, 17, 513−886.
(27) Kohlmann, T.; Naumann, R.; Kerzig, C.; Goez, M. 3-
Aminoperylene and Ascorbate in Aqueous SDS, One Green Laser
Flash... and Action! Sustainably Detoxifying a Recalcitrant Chloro-
Organic. Photochem. Photobiol. Sci. 2017, 16, 1613−1622.
(28) Kerzig, C.; Goez, M. Combining Energy and Electron Transfer
in a Supramolecular Environment for the “Green” Generation and
Utilization of Hydrated Electrons through Photoredox Catalysis.
Chem. Sci. 2016, 7, 3862−3868.
ACKNOWLEDGMENTS
■
Financial support provided by the German National Academy
of Sciences to C.K. (postdoctoral fellowship LPDS 2017-11)
and by the Swiss National Science Foundation (Grant no.
200021_178760) to O.S.W. is gratefully acknowledged.
REFERENCES
■
(1) Nguyen, J. D.; D’Amato, E. M.; Narayanam, J. M. R.;
Stephenson, C. R. J. Engaging Unactivated Alkyl, Alkenyl and Aryl
Iodides in Visible-Light-Mediated Free Radical Reactions. Nat. Chem.
2012, 4, 854−859.
̈
(2) Ghosh, I.; Ghosh, T.; Bardagi, J. I.; Konig, B. Reduction of Aryl
Halides by Consecutive Visible Light-Induced Electron Transfer
Processes. Science 2014, 346, 725−728.
(3) Goez, M.; Kerzig, C.; Naumann, R. An “All-Green” Catalytic
Cycle of Aqueous Photoionization. Angew. Chem., Int. Ed. 2014, 53,
9914−9916.
(4) Zeng, L.; Liu, T.; He, C.; Shi, D.; Zhang, F.; Duan, C. Organized
Aggregation Makes Insoluble Perylene Diimide Efficient for the
Reduction of Aryl Halides via Consecutive Visible Light-Induced
Electron-Transfer Processes. J. Am. Chem. Soc. 2016, 138, 3958−
3961.
̈
(5) Ghosh, I.; Konig, B. Chromoselective Photocatalysis: Controlled
Bond Activation through Light-Color Regulation of Redox Potentials.
Angew. Chem., Int. Ed. 2016, 55, 7676−7679.
̃
(6) Neumeier, M.; Sampedro, D.; Majek, M.; de la Pena O’Shea, V.
A.; Jacobi von Wangelin, A.; Perez-Ruiz, R. Dichromatic Photo-
catalytic Substitutions of Aryl Halides with a Small Organic Dye.
Chem. - Eur. J. 2018, 24, 105−108.
́
́
(7) Gong, H.-X.; Cao, Z.; Li, M.-H.; Liao, S.-H.; Lin, M.-J.
Photoexcited Perylene Diimide Radical Anions for the Reduction of
Aryl Halides: A Bay-Substituent Effect. Org. Chem. Front. 2018, 5,
2296−2302.
̈
(8) Meyer, A. U.; Slanina, T.; Heckel, A.; Konig, B. Lanthanide Ions
Coupled with Photoinduced Electron Transfer Generate Strong
Reduction Potentials from Visible Light. Chem. - Eur. J. 2017, 23,
7900−7904.
̈
(9) Haimerl, J.; Ghosh, I.; Konig, B.; Vogelsang, J.; Lupton, J. M.
Single-Molecule Photoredox Catalysis. Chem. Sci. 2019,
(29) Li, X.; Ma, J.; Liu, G.; Fang, J.; Yue, S.; Guan, Y.; Chen, L.; Liu,
X. Efficient Reductive Dechlorination of Monochloroacetic Acid by
Sulfite/UV Process. Environ. Sci. Technol. 2012, 46, 7342−7349.
(30) Zhu, D.; Zhang, L.; Ruther, R. E.; Hamers, R. J. Photo-
Illuminated Diamond as a Solid-State Source of Solvated Electrons in
Water for Nitrogen Reduction. Nat. Mater. 2013, 12, 836−841.
(31) Zhang, L.; Zhu, D.; Nathanson, G. M.; Hamers, R. J. Selective
Photoelectrochemical Reduction of Aqueous CO2 to CO by Solvated
Electrons. Angew. Chem., Int. Ed. 2014, 53, 9746−9750.
(32) Guo, X.; Okamoto, Y.; Schreier, M. R.; Ward, T. R.; Wenger,
O. S. Enantioselective Synthesis of Amines by Combining Photoredox
and Enzymatic Catalysis in a Cyclic Reaction Network. Chem. Sci.
2018, 9, 5052−5056.
(10) Naumann, R.; Kerzig, C.; Goez, M. Laboratory-Scale
Photoredox Catalysis Using Hydrated Electrons Sustainably Gen-
erated with a Single Green Laser. Chem. Sci. 2017, 8, 7510−7520.
(11) Naumann, R.; Lehmann, F.; Goez, M. Generating Hydrated
Electrons for Chemical Syntheses by Using a Green Light-Emitting
Diode (LED). Angew. Chem., Int. Ed. 2018, 57, 1078−1081.
(12) Naumann, R.; Lehmann, F.; Goez, M. Micellized Tris-
(bipyridine)ruthenium Catalysts Affording Preparative Amounts of
Hydrated Electrons with a Green Light-Emitting Diode. Chem. - Eur.
J. 2018, 24, 13259−13269.
(13) Naumann, R.; Goez, M. First Micelle-Free Photoredox
Catalytic Access to Hydrated Electrons for Syntheses and
E
J. Am. Chem. Soc. XXXX, XXX, XXX−XXX