4292 Nucleic Acids Research, 2021, Vol. 49, No. 8
effecting the synthesis of 7-deazapurine ribonucleosides. J. Org.
Chem., 83, 8589–8595.
27. Seela,F., Mersmann,K., Grasby,J.A. and Gait,M.J. (1993)
7-Deazaadenosine – oligoribonucleotide building-block synthesis and
autocatalytic hydrolysis of base-modified hammerhead ribozymes.
Helv. Chim. Acta, 76, 1809–1820.
28. Mairhofer,E., Fuchs,E. and Micura,R. (2016) Facile synthesis of a
3-deazaadenosine phosphoramidite for RNA solid-phase synthesis.
Beilstein J. Org. Chem., 12, 2556–2562.
45. Saenger,W. (1984) In: Principles of Nucleic Acid Structure, Springer,
Berlin.
46. Majlessi,M. and Becker,M.M. (2008) Formation of the double helix:
a mutational study. Nucleic Acids Res., 36, 2981–2989.
47. Seio,K., Sasami,T., Ohkubo,A., Ando,K. and Sekine,M. (2007)
Highly selective recognition of cytosine over uracil and adenine by a
guanine analogue, 2-N-acetyl-3-deazaguanine, in
2ꢀ-O-methyl-RNA/RNA and DNA duplexes. J. Am. Chem. Soc., 129,
1026–1027.
29. Gold,B., Stone,M.P. and Marky,L.A. (2014) Looking for Waldo: a
potential thermodynamic signature to DNA damage. Acc. Chem.
Res., 47, 1446–1454.
30. Kowal,E.A., Ganguly,M., Pallan,P.S., Marky,L.A., Gold,B., Egli,M.
and Stone,M.P. (2011) Altering the electrostatic potential in the
major groove: thermodynamic and structural characterization of
7-deaza-2ꢀ-deoxyadenosine:dT base pairing in DNA. J. Phys. Chem.
B., 115, 13925–13934.
31. Ganguly,M., Wang,R.W., Marky,L.A. and Gold,B. (2010)
Thermodynamic characterization of DNA with 3-deazaadenine and
3-methyl-3-deazaadenine substitutions: the effect of placing a
hydrophobic group in the minor groove of DNA. J. Phys. Chem. B.,
114, 7656–7661.
32. Lever,C., Li,X., Cosstick,R., Edel,S. and Brown,T. (1993)
Thermodynamic stability and drug-binding properties of
oligodeoxyribonucleotide duplexes containing
48. Seio,K., Sasami,T., Tawarada,R. and Sekine,M. (2006) Synthesis of
2ꢀ-O-methyl-RNAs incorporating a 3-deazaguanine, and UV melting
and computational studies on its hybridization properties. Nucleic
Acids Res., 34, 4324–4334.
49. Marky,L.A. and Breslauer,K.J. (1987) Calculating thermodynamic
data for transitions of any molecularity from equilibrium melting
curves. Biopolymers, 26, 1601−1620.
50. Petersheim,M. and Turner,D.H. (1983) Base-stacking and
base-pairing contributions to helix stability: thermodynamics of
double-helix formation with CCGG, CCGGp, CCGGAp, ACCGGp,
CCGGUp, and ACCGGUp. Biochemistry, 22, 256−263.
51. Siraiwa,S., Suzuki,A., Katoh,R. and Saito,Y. (2016) Design and
synthesis of a novel fluorescent benzo[g]imidazo[4, 5-c]quinoline
nucleoside for monitoring base-pair-induced protonation with
cytosine: distinguishing cytosine via changes in the intensity and
wavelength of fluorescence. Org. Biomol. Chem., 14, 3934–3942.
52. Puffer,B., Kreutz,C., Rieder,U., Ebert,M.O., Konrat,R. and
Micura,R. (2009) 5-Fluoro pyrimidines: labels to probe DNA and
RNA secondary structures by 1D 19F NMR spectroscopy. Nucleic.
Acids. Res., 37, 7728–7740.
3-deazaadenine:thymine base pairs. Nucleic Acids Res., 21,
1743–1746.
33. Cosstick,R., Li,X., Tuli,D.K., Williams,D.M., Connolly,B.A. and
Newman,P.C. (1990) Molecular recognition in the minor groove of
the DNA helix. Studies on the synthesis of oligonucleotides and
polynucleotides containing 3-deaza-2ꢀ-deoxyadenosine. Interaction of
the oligonucleotides with the restriction endonuclease EcoRV. Nucleic
Acids Res., 18, 4771–4778.
34. Minakawa,N., Kawano,Y., Murata,S., Inoue,N. and Matsuda,A.
(2008) Oligodeoxynucleotides containing 3-bromo-3-deazaadenine
and 7-bromo-7-deazaadenine 2ꢀ-deoxynucleosides as chemical probes
to investigate DNA-protein interactions. ChemBioChem, 9, 464–470.
35. Seela,F. and Grein,T. (1992) 7-Deaza-2ꢀ-deoxyadenosine and
3-deaza-2ꢀ-deoxyadenosine replacing dA within d(A6)-tracts:
differential bending at 3ꢀ- and 5ꢀ-junctions of d(A6).d(T6) and
B-DNA. Nucleic Acids Res., 20, 2297–2306.
36. Grein,T., Lampe,S., Mersmann,K., Rosemeyer,H., Thomas,H. and
Seela,F. (1994) 3-Deazapurines and 7-deazapurines - duplex stability
of oligonucleotides containing modified adenine or guanine bases.
Bioorg. Med. Chem. Lett., 4, 971–976.
37. Ganguly,M., Wang,F., Kaushik,M., Stone,M.P., Marky,L.A. and
Gold,B. (2007) A study of 7-deaza-2ꢀ-deoxyguanosine
2ꢀ-deoxycytidine base pairing in DNA. Nucleic Acids Res., 35,
6181–6195.
53. Strebitzer,E., Rangadurai,A., Plangger,R., Kremser,J., Juen,M.A.,
Tollinger,M., Al-Hashimi,H.M. and Kreutz,C. (2018) 5-Oxyacetic
acid modification destabilizes double helical stem structures and
favors anionic Watson-Crick like cmo5U-G base pairs. Chem. Eur. J.,
24, 18903–18906.
54. Hwang,T.-L., van Zijl,P.C.M. and Mori,S. (1998) Accurate
Quantitation of Water-amide Proton Exchange Rates Using the
Phase-Modulated CLEAN Chemical EXchange (CLEANEX-PM)
Approach with a Fast-HSQC (FHSQC) Detection Scheme. J. Biomol.
NMR, 11, 221–226.
55. Gue´ron,M. and Leroy,J.L. (1995) Studies of base pair kinetics by
NMR measurement of proton exchange. Methods Enzymol., 261,
383–413.
56. Olieric,V., Rieder,U., Lang,K., Serganov,A., Schulze-Briese,C.,
Micura,R., Dumas,P. and Ennifar,E.,2009, A fast selenium
derivatization strategy for crystallization and phasing of RNA
structures. RNA, 15, 707–715.
57. Correll,C.C., Wool,I.G. and Munishkin,A. (1999) The two faces of
the Escherichia coli 23 S rRNA sarcin/ricin domain: the structure at
1.11 A resolution. J. Mol. Biol., 292, 275–287.
38. Ganguly,M., Wang,R.-W., Marky,L.A. and Gold,B. (2009)
Introduction of cationic charge into DNA near the major groove edge
of a guanine cytosine base pair: characterization of
58. Sponer,J., Leszczynski,J. and Hobza,P. (2001) Electronic properties,
hydrogen bonding, stacking, and cation binding of DNA and RNA
bases. Biopolymers, 61, 3–31.
59. Krishnamurthy,R. (2009) A search for structural alternatives of
RNA. J. Mex. Chem. Soc., 53, 22–33.
60. Thaplyal,P. and Bevilacqua,P.C. (2014) Experimental approaches for
measuring pKa’s in RNA and DNA. Methods Enzymol., 549,
189–219.
61. Acharya,P., Cheruku,P., Chatterjee,S., Acharya,S. and
Chattopadhyaya,J. (2014) The measurement of nucleobase pKa of the
model mononucleotides shows why RNA-RNA duplex is more stable
than DNA-DNA duplex. J. Am. Chem. Soc., 126, 2862–2869.
62. Gilli,P., Pretto,L., Bertolasi,V. and Gilli,G. (2009) Predicting
hydrogen-bond strengths from acid−base molecular properties. The
pKa slide rule: toward the solution of a long-lasting problem. Acc.
Chem. Res., 42, 33–44.
oligodeoxynucleotides substituted with
7-aminomethyl-7-deaza-2ꢀ-deoxyguanosine. J. Am. Chem. Soc., 131,
12068–12069.
39. Hakimelahi,G.H., Proba,Z.A. and Ogilvie,K.K. (1981) Nitrate ion as
catalyst for selective silylations of nucleosides. Tetrahedron Lett., 22,
4775–4778.
40. Serebryany,V. and Beigelman,L. (2002) An efficient preparation of
protected ribonucleosides for phosphoramidite RNA synthesis.
Tetrahedron Lett., 43, 1983–1985.
41. Micura,R. (2002) Small interfering RNAs and their chemical
synthesis. Angew. Chem. Int. Ed., 41, 2265–2269.
42. Glasner,H., Riml,C., Micura,R. and Breuker,K. (2017) Label-free,
direct localization and relative quantitation of the RNA nucleobase
methylations m6A, m5C, m3U, and m5U by top-down mass
spectrometry. Nucleic Acids Res., 45, 8014–8025.
43. Crey-Desbiolles,C., Lhomme,J., Dumy,P. and Kotera,M. (2004)
3-Nitro-3-deaza-2ꢀ-deoxyadenosine as a versatile photocleavable
2ꢀ-deoxyadenosine mimic. J. Am. Chem. Soc., 126, 9532–9533.
44. Maiti,M., Persoons,L., Andrei,G., Snoeck,R., Balzarini,J. and
Herdewijn,P. (2013) Synthesis and anti-herpetic activity of
phosphoramidate ProTides. Chem. Med. Chem., 8, 985–993.
63. Wahl,M.C., Rao,S.T. and Sundaralingam,M. (1996) The structure of
r(UUCGCG) has a 5ꢀ-UU-overhang exhibiting Hoogsteen-like trans
U • U base pairs. Nat. Struct. Biol., 3, 24–31.
64. Adamiak,D.A., Milecki,J., Adamiak,R.W. and Rypniewski,W. (2010)
The hydration and unusual hydrogen bonding in the crystal structure
of an RNA duplex containing alternating CG base pairs. New J.
Chem., 34, 903–909.