Mendeleev Commun., 2016, 26, 66–68
OMe
OMe
OMe
OMe NH2
(53% on 2 steps in one pot starting from 13a) than synthesized
CN
CN
O
O
O
O
O
O
by two stages (45% on 2 steps with separation). Diamine
dihydrochloride 14a·2HCl was transformed to 1,4-dihydro-
quinoxaline-2,3-dione 19a on reflux with oxalic acid in 2 n HCl.
In conclusion, dill and parsley seed extracts represent suitable
starting material for the large-scale synthesis of fused nitrogen
polyalkoxyheterocycles with strong antimitotic activity. The inter-
mediate polyalkoxyarenediamines can be considered as promising
synthons for the preparation of polymethoxy-substituted fused
heterocycles.
O
i or ii
+
NO2
NH2
NH2
OMe
OMe
7a
16a
81%
17a
impurity 10%
OMe
OMe
CO2Me
NO2
CO2Me
O
O
O
O
i
NH2
Online Supplementary Materials
Supplementary data associated with this article can be found
in the online version at doi:10.1016/j.mencom.2016.01.026.
OMe
OMe
8a
15a
85%
13a,b
i
References
1 (a) A. Jordan, J. A. Hadfield, N. J. Lawrence and A. T. McGown, Med.
Res. Rev., 1998, 18, 259; (b) S. Desbene and S. Giorgi-Renault, Curr.
Med. Chem.: Anti-Cancer Agents, 2002, 2, 71; (c) N.-H. Nam, Curr. Med.
Chem., 2003, 10, 1697; (d) V. V. Semenov and M. N. Semenova, Russ.
Chem. Rev., 2015, 84, 134.
2 M. J. Piggott and D. Wege, Aust. J. Chem., 2000, 53, 749.
3 A. Maiti, P. V. N. Reddy, M. Sturdy, L. Marler, S. D. Pegan, A. D. Mesecar,
J. M. Pezzuto and M. Cushman, J. Med. Chem., 2009, 52, 1873.
4 F. Dallacker and G. Adolphen, Liebigs Ann. Chem., 1966, 691, 138.
5 S. Habtemariam, P. G. Waterman and T. G. Hartley, Phytochemistry, 1996,
43, 291.
6 M. W. Muriithi, A.-K. Abraham, I. Scowen, S. L. Croft, P. M. Gitu,
H. Kendrick, W. Njagi and W. Colin, J. Nat. Prod., 2002, 65, 956.
7 V. S. P. Chaturvedula, J. K. Schilling, J. S. Miller, R. Andriantsiferana,
V. E. Rasamison and D. G. I. Kingston, J. Nat. Prod., 2003, 66, 532.
8 A. T. Shulgin and A. Shulgin, Tinkal: The Continuation, Transform Press,
Berkeley, 1977, p. 646.
OMe
OMe
OMe
OMe
H
N
R1
R2
R1
R2
NH2
O
O
N
O
O
iii
iv
NH
NH2
N
H
R3
R3
18a,b
53–72%
14a,b
63–75%
19a
76%
a R1 + R2 = OCH2O, R3 = OMe
b R1 = OMe, R2 + R3 = OCH2O
Scheme 4 Reagents and conditions: i, H2 (30 bar), block highly porous
ceramic catalyst (1% Pd/6% g-Al2O3), MeOH, room temperature, 3 h; ii, H2
(30 bar), granulated 5% Pd/C, MeOH, 40–45°C, 4.5 h; iii, HCOOH, reflux,
3 h; iv, (HO2C)2, 2 n HCl, reflux, 3 h.
9 V. V. Semenov, V. A. Rusak, E. M. Chartov, M. I. Zaretskii, L. D.
Konyushkin, S. I. Firgang, A. O. Chizhov, V. V. Elkin, N. N. Latin,
V. M. Bonashek and O. N. Stas’eva, Russ. Chem. Bull., Int. Ed., 2007,
56, 2448 (Izv. Akad. Nauk, Ser. Khim., 2007, 2364).
10 V. V. Semenov, A. S. Kiselyov, I. Y. Titov, I. K. Sagamanova, N. N. Ikizalp,
N. B. Chernysheva, D. V. Tsyganov, L. D. Konyushkin, S. I. Firgang,
R. V. Semenov, I. B. Karmanova, M. M. Raihstat and M. N. Semenova,
J. Nat. Prod., 2010, 73, 1796.
11 L. D. Konyushkin, T. I. Godovikova, S. K. Vorontsova, D. V. Tsyganov,
I. B. Karmanova, M. M. Raihstat, S. I. Firgang, M. A. Pokrovskii, A. G.
Pokrovskii, M. N. Semenova and V. V. Semenov, Russ. Chem. Bull., Int.
Ed., 2010, 59, 2268 (Izv. Akad. Nauk, Ser. Khim., 2010, 2212).
12 D. V. Tsyganov, N. B. Chernysheva, L. K. Salamandra, L. D. Konyushkin,
O. P. Atamanenko and V. V. Semenov, Mendeleev Commun., 2013, 23, 147.
13 F. Dallacker and F. Gohlke, Liebigs Ann. Chem., 1961, 644, 30.
14 J. Ginsberg, Chem. Ber., 1888, 21, 1192.
7a with 5% Pd/C brought about 10% of aminobenzamide 17a
as a by-product. This type of block catalysts can be repeatedly
regenerated by hydrogen directly in the reactor at 400°C up to
30–40 times without activity loss.
The reaction mixture could be quickly extracted from the
reactor without filtration devices. Diamines 14a,b were separated
as stable diaminobenzene hydrochlorides. Diamines 14a,b can
be condensed with HOOCH–CH(OEt)3 to afford benzimidazoles
18a,b directly in the course of hydrogenation in a stainless steel
reactor. Diamine 14b cannot be isolated and purified due to its
instability in air, but can be converted in situ to benzimidazole
18b in high yield (72% starting from 13b in one pot). Similarly,
18a was also obtained without separation of 14a in higher yield
15 G. Ciamician and P. Silber, Chem. Ber., 1890, 20, 35.
‡
Hydrogenation of polyalkoxynitrobenzenes 7a, 8a and 13a with block
16 G. Ciamician and P. Silber, Chem. Ber., 1889, 22, 2489.
17 F. Dallacker, L. Erkens and O. Kim, Z. Naturforsch. C, 1978, 33C, 459.
18 H. Gilman and H. S. Broadbent, J. Am. Chem. Soc., 1948, 70, 2619.
19 R. E. Lyle and J. L. LaMattia, J. Org. Chem., 1975, 40, 438.
20 J. R. E. Hoover and A. R. Day, J. Am. Chem. Soc., 1955, 77, 4324.
21 B. C. Platt and T. M. Sharp, J. Chem. Soc., 1948, 2129.
22 G. Ciamician and P. Silber, Chem. Ber., 1890, 23, 2283.
23 V. V. Elkin, L. N. Tolkacheva, N. B. Chernysheva, I. B. Karmanova, L. D.
Konyushkin and V. V. Semenov, Russ. Chem. Bull., Int. Ed., 2007, 56,
1216 (Izv. Akad. Nauk, Ser. Khim., 2007, 1171).
highly porous ceramic catalyst. The process employed block highly porous
cellular catalyst.25(b) Highly porous ceramic material (a-Al2O3) covered
by sol g-Al2O3 with pores no less than 70–95% was used as catalyst carrier,
readily permeable to air and water. This catalyst carrier was impregnated
with Pd(NO3)2 and heated at 450°C to provide PdO-coating, which was
hydrogenated to metallic Pd with hydrogen at 50–55°C, yielding the
target block highly porous ceramic catalyst with 1% Pd/6% g-Al2O3.
Block highly porous ceramic catalyst cylinder (1% Pd/6% g-Al2O3,
50 mm diameter, 50 mm height, 10 ppi cell, 33.9 g, 70–95% pores) was
fixed in the middle of stainless steel cylinder autoclave (50 mm inner
diameter) equipped with thermocouple, hydrogen inlet tube, and electric
heating system. The stirring of the reaction mixture was provided by
shaking device (capacity 120–160 min–1).
The solution of nitroarene 7a, 8a or 13a (20 mmol) in MeOH (200 ml)
was hydrogenated at room temperature for 3 h at hydrogen pressure of
30 bar. The reaction mixture was removed from autoclave, the solvent was
evaporated, and the residue was recrystallized from a proper solvent to
afford 15a (or 16a). In case of separation of 14a, HCl (36.5%, 7 ml) was
added immediately to autoclave, the reaction mixture was removed,
diluted with additional portion of HCl to pH 2, evaporated to dryness.
The residue was mixed with CH2Cl2 (120 ml) within 5–10 min, filtered,
washed with CH2Cl2 (100 ml), and dried in air to afford 14a·2HCl as
brown crystals.
24 (a)
A. I. Kozlov and E. S. Lukin, RF Patent 2233700, 2004; (b) A. I. Kozlov
,
E. S. Lukin, I. A. Kozlov, V. P. Kolesnikov and V. N. Grunskii, Glass
and Ceramics, 2005, 62, 206 (Steklo i Keramika, 2005, no. 7, 12);
(c) A. S. Shaimardanov, E. M. Kol’tsova, A. I. Kozlov, A. V. Zhensa,
V. A. Kostikov and L. S. Gordeev, Theor. Found. Chem. Eng., 2007, 41,
137 (Teor. Osnovy Khim. Tekhnol., 2007, 41, 148).
25 (a) N. I. Vavilov, V. L. Zbarsky, A. I. Kozlov, E. S. Lukin, E. N. Mizgunova,
P. I. Fedotov and V. A. Chashtin, RF Patent 2164222, 2001; (b) V. L.
Zbarsky, N. V. Khodov, A. I. Kuimov and A. I. Kozlov, RF Patent
2333795, 2008; (c) A. I. Kozlov, V. N. Grunskii, A. V. Bespalov, A. S.
Novoselov, D. S. Grakova, A. A. Merkin andA. A. Komarov, Usp. Khim.
Khim. Tekhnol., 2008, 22 (2), 49 (in Russian).
Received: 29th May 2015; Com. 15/4638
– 68 –