Organic & Biomolecular Chemistry
Page 6 of 7
Journal Name
ARTICLE
within the microchannel for 15 h at 0.05 µL min-1 followed by
thorough rinsing with water and ethanol.
3
(a) K. Köhler, K. Wussow and A. S. Wirth, in Palladium-Catalyzed
DOI: 10.1039/C5OB00289C
Continuous flow Sonogashira (Heck-Cassar) cross-coupling
reaction
2320.
4
5
6
X.-F. Wu, P. Anbarasan, H. Neuman and M. Beller, Angew. Chem.
Int. Ed., 2010, 49, 9047-9050.
Iodobenzene (0.10 mmol) was reacted with phenylacetylene
(0.15 mmol) in ethanol (10 mL) at 80 °C using
tetrabutylammonium hydroxide as base (0.20 mmol, 1.0 M
solution in methanol). This solution was passed through the
catalytic microreactor at different flow rates and the reaction
product was collected and analyzed off-line by GC (Fig. S24).
The second order rate constant was determined from the initial
rate according to the equation: initial rate = k * [iodobenzene]0
* [phenylacetylene]0. The turnover frequency (TOF) was
calculated based on the moles of product per unit time per
moles of catalyst within the microreactor volume (13 µL). The
moles of catalyst are based on the total amount of metal atoms
(1.1 nmol of Pd).
K. Na, Q. Zhang, and G. A. Somorjai, J. Clust. Sci., 2014, 25, 83-
114.
(a) F. Zaera, Chem. Soc. Rev., 2013, 42, 2746-2762; (b) K. Philippot
and P. Serp, in Nanomaterials in Catalysis, eds. K. Philippot and P.
Serp, Wiley-VCH, Weinheim, 2013, ch. 1, p. 1-54; (c) V.
Polshettiwar, J.-M. Basset and D. Astruc, ChemSusChem, 2012, 5, 6-
8; (d) S. B. Kalidindi and B. R. Jagirdar, ChemSusChem, 2012, 5,
65-75.
7
(a) P. Taladriz-Blanco, P. Hervés and J. Pérez-Juste, Top. Catal.,
2013, 56, 1154-1170; (b) A. Fihri, M. Bouhrara, B. Nekoueishahraki,
J.-M. Basset and V. Polshettiwar, Chem. Soc. Rev., 2011, 40, 5181-
5203; (c) S. K. Beaumont, J. Chem. Technol. Biotechnol., 2012, 87
,
595-600; (d) A. Balanta, C. Godard and C. Claver, Chem. Soc. Rev.,
2011, 40, 4973-4985.
Continuous flow Suzuki-Miyaura cross-coupling reactions
For all the experiments described aryl halides (0.10 mmol) were
reacted with p-tolylboronic acid or phenylboronic acid (0.15
8
9
(a) W. R. Reynolds and C. G. Frost, in Palladium-Catalyzed
Coupling Reactions, ed. A. Molnár, Wiley-VCH, Weinheim, 2013,
ch. 11, p. 409-443; (b) T. Noël and S. L. Buchwald, Chem. Soc. Rev.,
2011, 40, 5010-5029.
mmol) in ethanol (10 mL) at 80 °C using tetrabutylammonium
hydroxide as base (0.20 mmol, 1.0 M solution in methanol). All
solutions were passed through the catalytic microreactor at
different flow rates and the reaction products were collected
and analyzed off-line by GC (see Supporting Information, Figs.
S5-S23). For the Hammett plot analysis, the apparent rate
constants for the different substrates were calculated using a
large excess of phenylboronic acid to achieve pseudo-first order
For some recent reviews about catalysis in microreactors see: (a) R.
Munirathinam, J. Huskens and W. Verboom, Adv. Synth. Catal.,
2015, DOI: 10.1002/adsc.201401001; (b) C. Wiles and P. Watts,
Green Chem., 2014, 16, 55-62; (c) Y. Su, N. J. W. Straathof, V.
Hessel and T. Noël, Chem. Eur. J., 2014, 20, 10562-10589; (d) B.-B.
Xu, Y.-L. Zhang, S. Wei, H. Ding and H.-B. Sun, ChemCatChem,
conditions. Therefore, 10 mM solutions of
p
-substituted aryl
2013, 5, 2091-2099; (e) T. Noël, X. Wang and V. Hessel, Chim.
iodides were reacted with a 150 mM solution of phenylboronic
acid. The Bu4NOH concentration was 160 mM.
Oggi, 2013, 31, 10-14; (f) S. G. Newman and K. F. Jensen, Green
Chem., 2012, 15, 1456-1472; (g) T. Chinnusamy, S. Yudha S, M.
Hager, P. Kreitmeier and O. Reiser, ChemSusChem, 2012, 5, 247-
255; (h) J. Wegner, S. Ceylan and A. Kirschning, Adv. Synth. Catal.,
2012, 354, 17-57.
Acknowledgements
We gratefully acknowledge the Netherlands Organization for
Scientific Research (NWO) for financial support (project
ECHO.09.TD.024). Michael Holtkamp and Uwe Karst
(University of Münster, Germany) are gratefully thanked for
the TXRF measurements.
10 (a) W. R. Reynolds, P. Plucinski and C. G. Frost, Catal. Sci.
Technol., 2014, , 948-954; (b) C. Pavia, E. Ballerini, L. A. Bivona,
4
F. Giacalone, C. Aprile, L. Vaccaro and M. Gruttadauria, Adv.
Synth. Cat., 2013, 355, 2007-2018; (c) A. K. Shil, N. R. Guha, D.
Sharma and P. Das, RSC Adv., 2013, 3, 13671-13676; (d) T. Noël, S.
Kuhn, A. J. Musacchio, K. F. Jensen and S. L. Buchwald, Angew.
Chem. Int. Ed., 2011, 50, 5943-5946; (e) K. Mennecke and A.
Notes and references
Kirschning, Beilstein J. Org. Chem., 2009,
5, No 21, DOI:
Laboratory of Molecular Nanofabrication, MESA+ Institute for
Nanotechnology, University of Twente.
P.O. Box 217, 7500 AE Enschede, The Netherlands
E-mail: w.verboom@utwente.nl.
10.3762/bjoc.5.21.
11 (a) C. Battilocchio, B. N. Bhawal, R. Chorghade, B. J. Deadman, J.
M. Hawkins and S. V. Ley, Isr. J. Chem., 2014, 54, 371-380; (b) L.-
M. Tan, Z.-Y. Sem, W.-Y. Chong, X. Liu, Hendra; W. L. Kwan and
C.-L. K. Lee, Org. Lett., 2012, 15, 65-67.
Electronic Supplementary Information (ESI) available: UV-Vis, XPS,
TEM, HRSEM data of the catalytic layer, GC chromatograms of Suzuki-
Miyaura and Heck-Cassar couplings. See DOI: 10.1039/b000000x/
12 B. Egle, J. Muñoz, N. Alonso, W. De Borggraeve, A. de la Hoz, A.
Díaz-Ortiz and J. Alcázar, J. Flow Chem., 2014, 4, 22-25.
1
2
A. Dumrath, C. Lübbe and M. Beller, in Palladium-Catalyzed
Coupling Reactions, ed. A. Molnár, Wiley-VCH, Weinheim, 2013,
ch. 12, p. 445-489.
13 G. Shi, F. Hong, Q. Liang, H. Fang, S. Nelson and S. G. Weber,
Anal. Chem., 2006, 78, 1972-1979.
14 (a) M. Pagliaro, V. Pandarus, R. Ciriminna, F. Béland and P. Demma
M. C. Kozlowski, B. J. Morgan and E. C. Linton, Chem. Soc. Rev.,
2009, 38, 3193-3207.
Carà, ChemCatChem, 2012,
4, 432-445; (b) M. Pérez-Lorenzo, J.
Phys. Chem. Lett., 2011, , 167-174.
3
6 | J. Name., 2012, 00, 1‐3
This journal is © The Royal Society of Chemistry 2012