C O M M U N I C A T I O N S
Scheme 2
material, but added H2O16 (200 mol % relative to 15) afforded the
desired product (16) in >95:5 dr (nOe).
References
(1) (a) Oka, M.; Iimura, S.; Tenmyo, O.; Sawada, Y.; Sugawara, M.; Ohkusa,
N.; Yamamoto, H.; Kawano, K.; Hu, S.-L.; Fukagawa, Y.; Oki, T. J.
Antibiot. 1993, 46, 367. (b) Jung, H. J.; Lee, H. B.; Kim, C. J.; Rho,
J.-R.; Shin, J.; Kwon, H. J. J. Antibiot. 2003, 56, 492.
(2) (a) Iimura, S.; Oka, M.; Narita, Y.; Konishi, M.; Kakisawa, H.; Gao, Q.;
Oki, T. Tetrahedron Lett. 1993, 34, 493. (b) Oka, M.; Iimura, S.; Narita,
Y.; Furumai, T.; Konishi, M.; Oki, T.; Gao, Q.; Kakisawa, H. J. Org.
Chem. 1993, 58, 1875. (c) See also: Schlegel, B.; Schmidtke, M.; Do¨rfelt,
H.; Kleinwa¨chter, P.; Gra¨fe, U. J. Basic Microbiol. 2001, 41, 179.
(3) (a) Randazzo, G.; Fogliano, V.; Ritieni, A.; Mannina, L.; Rossi, E.;
Scarallo, A.; Segre, A. L. Tetrahedron 1993, 49, 10883. (b) Santini, A.;
Ritieni, A.; Fogliano, V.; Randazzo, G.; Mannina, L.; Logrieco, A.;
Benedetti, E. J. Nat. Prod. 1996, 59, 109.
Completion of the synthesis of (-)-terpestacin required three
further transformations, TBAF-mediated removal of the TIPS
protective group and oxidative ring opening of 3a by way of enolate
hydroxylation17 and isomerization of the resulting hemiketal (17)
under mild, basic conditions. Overall, preparation of 1a and 1b
each required 17 steps from 7 (longest linear sequence).18
The spectroscopic data we obtained for our synthetic (-)-
terpestacin are identical in all respects to those previously reported
for natural and synthetic material.19 However, “siccanol” differs
strikingly from our synthetic 11-epi-terpestacin and in fact is
indistinguishable from (-)-terpestacin. A sample of natural material
kindly provided to us by Professor Miyagawa confirmed the
structural reassignments“siccanol” is (-)-terpestacin, not 11-epi-
terpestacin (see Supporting Information). Our hypothesis is that the
Mosher ester analysis used in the original assignment of the C11
configuration of siccanol is ultimately the origin of this discrepancy.
A detailed analysis of the data in the literature relevant to this issue,
and a full account of the syntheses summarized above will be
reported in due course.
(4) Tatsuta, K.; Masuda, N. J. Antibiot. 1998, 51, 602.
(5) Myers, A. G.; Siu, M.; Ren, F. J. Am. Chem. Soc. 2002, 124, 4230.
(6) Nihashi, Y.; Lim, C.-H.; Tanaka, C.; Miyagawa, H.; Ueno, T. Biosci.
Biotechnol. Biochem. 2002, 66, 685.
(7) (a) Colby, E. A.; Jamison, T. F. J. Org. Chem. 2003, 68, 156. (b) Miller,
K. M.; Huang, W.-S.; Jamison, T. F. J. Am. Chem. Soc. 2003, 125, 3442.
(c) Chan, J.; Huang, W.-S.; Jamison, T. F. Org. Lett. 2000, 2, 4221.
(8) Shambayati, S.; Crowe, W. E.; Schreiber, S. L. Tetrahedron Lett. 1990,
31, 5289.
(9) Botteghi, C.; Consiglio, G.; Ceccarelli, G.; Stefani, A. J. Org. Chem. 1972,
37, 1835. Resolved with (+)-(Ipc)2BH (>99% ee; 55% conversion).
(10) Kerr, W. J.; McLaughlin, M.; Pauson, P. L.; Robertson, S. M. J.
Organomet. Chem. 2001, 630, 104.
(11) Direct installation of the methylpropargyl group by conjugate addition of
allenylstannane reagents to 6 was unsuccessful: Haruta, J.; Nishi, K.;
Matsuda, S.; Akai, S.; Tamura, Y.; Kita, Y. J. Org. Chem. 1990, 55, 4853.
(12) (a) Takano, S.; Sekiguchi, Y.; Sato, N.; Ogasawara, K. Synthesis 1987,
139. (b) Recent application in total synthesis: Thompson, C. F.; Jamison,
T. F.; Jacobsen, E. N. J. Am. Chem. Soc. 2000, 122, 10482.
(13) (a) Crispino, G. A.; Ho, P. T.; Sharpless, K. B. Science 1993, 259, 64.
(b) Corey, E. J.; Noe, M. C.; Lin, S. Tetrahedron Lett. 1995, 36, 8741.
(14) Notable exceptions: (a) Et vs Me (2:1): Larock, R. C.; Yum, E. K. J.
Am. Chem. Soc. 1991, 113, 6689. (b) i-Bu vs Me (7.3:1): Molander, G.
A.; Retsch, W. H. Organometallics 1995, 14, 4570. (c) n-Undecyl vs Me
(2.4:1): Trost, B. M.; Ball, Z. T. J. Am. Chem. Soc. 2001, 123, 12726.
(15) R)-P-phenyl-P-(p-xylyl)-ferrocenylphosphine provided a higher overall
yield (85%; 2.1:1 dr, 2.6:1 regioselectivity); see Supporting Information.
(16) Sodium hydroxide, finely dispersed in toluene, is likely the operative base,
and it should be noted that the use of solvents other than toluene led to
nearly exclusive O-alkylation of the enolate.
Acknowledgment. We are grateful to Professor Hisashi Miya-
gawa, Kyoto University, for a generous supply of natural 1a. We
thank Mr. Ryan K. Zeidan (Pfizer SURF) and Mr. Jianlong Tan
for experimental assistance. This work was supported by the
National Institute of General Medical Sciences (GM-063755) and
by Bristol Myers-Squibb and Boehringer-Ingelheim (research
assistantships to J.C.). We also thank the NSF (CAREER CHE-
0134704), Merck Research Laboratories, Johnson & Johnson,
Amgen, and MIT for generous financial support. The NSF (CHE-
9809061 and DBI-9729592) and NIH (1S10RR13886-01) provide
partial support for the MIT Department of Chemistry Instrumenta-
tion Facility.
(17) Hartwig, W.; Born, L. J. Org. Chem. 1987, 52, 4352.
(18) epi-Terpestacin (1b) was prepared by the same sequence from 11-epi-13.
The same nOe shown for 16 (Scheme 2) was observed in 11-epi-16.
(19) That is, refs 2c and 5, and all data in refs 1a, 2a,b, and 4, except [R]D,
which Myers demonstrated to be artifactual (see ref 5).
Supporting Information Available: Experimental procedures and
data; tabulated NMR data and spectra of natural and synthetic 1a and
of 1b (PDF). This material is available free of charge via the Internet
JA0373925
9
J. AM. CHEM. SOC. VOL. 125, NO. 38, 2003 11515