Journal of the American Chemical Society
Together, our data indicate that catalytic CꢀH borylaꢀ
Page 4 of 5
1
2
3
4
5
6
7
8
9
1
1
1
1
1
1
1
1
1
1
2
2
2
2
2
2
2
2
2
2
3
3
3
3
3
3
3
3
3
3
4
4
4
4
4
4
4
4
4
4
5
5
5
5
5
5
5
5
5
5
6
tion, a transformation that previously required noble
metal catalysts, can be achieved with base metal cataꢀ
11
5
70. (b) Langer, R.; DiskinꢀPosner, Y.; Leitus, G.; Shimon, L. J. W. ;
BenꢀDavid, Y.; Milstein, D. Angew. Chem. Int. Ed. 2011, 50, 9948–
952.
lysts by using a mechanistic paradigm that depends on
intimate cooperativity between two closely associated
yet distinct base metal sites. Because the proposed
mechanism for this transformation involves bimetallic
versions of classical organometallic reaction steps such
as oxidative addition and reductive elimination, we are
confident that this catalyst design strategy can be generꢀ
alized to approach other important catalytic reactions
that typically require noble metals to proceed.
9
8
(
a) Boddien, A.; Mellmann, D.; Gartner, F.; Jackstell, R.; Junge,
H.; Dyson, P. J.; Laurenczy, G.; Ludwig, R.; Beller, M. Science 2011,
33, 1733–1736. (b) Helm, M. L.; Stewart, M. P.; Bullock, R. M.;
3
DuBois, M. R.; DuBois, D. L. Science 2011, 333, 863–866. (c) Myꢀ
ers, T. W.; Berben, L. A. J. Am. Chem. Soc. 2013, 135, 9988–9990.
(
d) Dunn, N. L.; Ha, M.; Radosevich, A. T. J. Am. Chem. Soc. 2012,
134, 11330–11333.
0
1
2
3
4
5
6
7
8
9
0
1
2
3
4
5
6
7
8
9
0
1
2
3
4
5
6
7
8
9
0
1
2
3
4
5
6
7
8
9
0
1
2
3
4
5
6
7
8
9
0
9
(a) PérezꢀTemprano, M. H.; Casares, J. A.; Espinet, P. Chem.
Eur. J. 2012, 18, 1864–1884. (b) Powers, D. C.; Ritter, T. Acc. Chem.
Res. 2012, 45, 840–850. (d) Radlauer, M. R.; Day, M. W.; Agapie, T.
J. Am. Chem. Soc. 2012, 134, 1478–1481. (e) Reed, S. A.; White, M.
C. J. Am. Chem. Soc. 2008, 130, 3316–3318.
ASSOCIATED CONTENT
1
0
(
a) Mulzer, M.; Whiting, B. T.; Coates, G. W. J. Am. Chem. Soc.
Supporting Information. Synthetic details, full catalytic
results, stoichiometric studies, NMR spectra, crystalloꢀ
graphic data. This material is available free of charge via
the Internet at http://pubs.acs.org.
2
013, 135, 10930–10933. (b) Uyeda, C.; Peters, J. C. J. Am. Chem.
Soc. 2013, 135, 12023–12031. (c) Ogo, S.; Ichikawa, K.; Kishima, T.;
Matsumoto, T.; Nakai, H.; Kusaka, K.; Ohhara, T. Science 2013, 339,
6
Mkhalid, I. A. I.; Barnard, J. H.; Marder, T. B.; Murphy, J. M.;
Hartwig, J. F. Chem. Rev. 2010, 110, 890–931.
82–684.
11
AUTHOR INFORMATION
Corresponding Author
1
2
(
a) Waltz, K. M.; He, W.; Muhoro, C.; Hartwig, J. F. J. Am.
Chem. Soc. 1995, 117, 11357–11358. (b) Waltz, K. M.; Muhoro, C.
N.; Hartwig, J. F. Organometallics 1999, 18, 3383–3393.
*
Eꢀmail: npm@uic.edu
1
3
(a) Hartwig, J. F. Acc. Chem. Res. 2012, 45, 864–873. (b) Cho,
J.ꢀY.; Tse, M. K.; Holmes, D.; Maleczka, R. E.; Smith, M. R. III,
ACKNOWLEDGMENT
Science 2002, 295, 305–308.
1
4
Financial support was provided by startꢀup funds from the
UIC Department of Chemistry and by a Pilot Research
Grant from the UIC Campus Research Board. Dan McIlꢀ
heny and Ben Ramirez assisted with NMR spectroscopy.
John (Art) Anderson assisted with GCꢀMS measurements.
Jayarathne, U.; Mazzacano, T. J.; Bagherzadeh, S.; Mankad, N.
P. Organometallics 2013, 32, 3986–3992.
15
For a review of MꢀFp complexes, see: Gade, L. H. Angew.
Chem. Int. Ed. Engl. 2000, 39, 2658–2678.
16
For a review of C–H functionalization using Fe catalysis, see:
Sun, C.ꢀL.; Li, B.ꢀJ.; Shi, Z.ꢀJ. Chem. Rev. 2011, 111, 1293–1314. See
5
Upul Jayarathne synthesized (IPr)CuFe(η ꢀC Me )(CO)
used for catalyst screening.
also ref 17.
5
5
2
17
(
a) Hennessy, E. T.; Betley, T. A. Science 2013, 340, 591–595.
(
b) Chen, M. S.; White, M. C. Science 2007, 318, 783–787. (c) Paꢀ
radine, S. M.; White, M. C. J. Am. Chem. Soc. 2012, 134, 2036–2039.
B pin is converted to HBpin under the reaction conditions, likely
2 2
REFERENCES
1
8
by intermediate formation of (IPr)Cu–Bpin and subsequent reaction
with FpH.
1
9
1
Zhou, W.; Napoline, J. W.; Thomas, C. T. Eur. J. Inorg. Chem.
Bullock, R. M., Ed. Catalysis Without Precious Metals; Wileyꢀ
2
011, 13, 2029–2033.
VCH, 2010.
20
2
Borylation of the benzylic position also was observed (<5%).
A ratio of 0.27:0.43:0.29 was observed for the stoichiometric
Friedman, D.; Masiangioli, T.; Olson, S. The Role of the Chemi-
2
1
cal Sciences in Finding Alternatives to Critical Resources: A Work-
1
2
borylation of anisole by FpBcat; the difference in selectivity is likely
dictated by the differing sizes of cat versus pin. The mass balance
from anisole borylation consisted of pinBOBpin and an unknown
shop Summary; National Academies Press, 2012.
3
Chirik, P. J.; Wieghardt, K. Science 2010, 327, 794–795.
(a) Czaplik, W. M.; Mayer, M.; Cvengroš, J.; von Wangelin, A. J.
4
2
product, possibly PhOCH Bpin.
Chem. Sus. Chem. 2009, 2, 396–417. (b) Bolm, C.; Legros, J.; Le
22
An attempt at using paraꢀxylene as an inert solvent under these
conditions for the borylation of benzene (10 equiv relative to HBpin)
resulted in 24% conversion (roughly 1:1 borylation of benzene and
paraꢀxylene).
Paih, J.; Zani, L. Chem. Rev. 2004, 104, 6217–6254.
5
(
a) Haneline, M. R.; Heyduk, A. F. J. Am. Chem. Soc. 2006, 128,
8
410–8411. (b) Gunanathan, C.; Milstein, D. Acc. Chem. Res. 2011,
44, 588–602.
2
3
6
Mankad, N. P.; Laitar, D. S.; Sadighi, J. P. Organometallics
Stephan, D. W.; Erker, G. Angew. Chem. Int. Ed. 2009, 49, 46–
2
004, 23, 3369–3371.
7
6.7
24
Shintani, R.; Nozaki, K. Organometallics 2013, 32, 2459.
(
a) Tondreau, A. M.; Atienza, C. C. H.; Weller, K. J.; Nye, S. A.;
2
5
Estes, D. P.; Vannucci, A. K.; Hall, A. R.; Lichtenberger, D. L.;
Norton, J. R. Organometallics 2011, 30, 3444–3447.
Lewis, K. M.; Delis, J. G. P.; Chirik, P. J. Science 2012, 335, 567–
ACS Paragon Plus Environment