ARTICLES
21. World Health Organization. WHO Fact Sheets on Tuberculosis (2009).
22. Zhang, L., Goren, M. B., Holzer, T. J. & Andersen, B. R. Effect of Mycobacterium
tuberculosis-derived sulfolipid I on human phagocytic cells. Infect. Immun.
56, 2876–2883 (1988).
23. Glickman, M. S. & Jacobs, W. R. Jr. Microbial pathogenesis of Mycobacterium
tuberculosis: dawn of a discipline. Cell 104, 477–485 (2001).
24. Converse, S. E. et al. MmpL8 is required for sulfolipid-1 biosynthesis and
Mycobacterium tuberculosis virulence. Proc. Natl Acad. Sci. USA 100,
6121–6126 (2003).
boronic esters. A new protocol for the protodeboronation of alkyl
pinacol boronic esters was developed for this strategy, which involved
the formation of a boronate complex (with RLi or TBAF) followed by
oxidation with Mn(OAc)3 in the presence of TBC. This new discon-
nection was successfully applied to a total synthesis of hydroxyphthio-
ceranic acid 10 in just 14 steps, with essentially complete stereocontrol.
The practicality of the synthesis has been demonstrated by carrying
out the sequence on a multigram scale. Moreover, our 14-step syn-
thesis is substantially shorter than any previous synthesis, which
demonstrates the power of the LBP strategy.
25. Goren, M. B., Brokl, O., Das, B. C. & Lederer, E. Sulfolipid I of Mycobacterium
tuberculosis, strain H37RV. Nature of the acyl substituents. Biochemistry
10, 72–81 (1971).
Received 28 February 2014; accepted 18 June 2014;
published online 27 July 2014
26. Goren, M. B., Brokl, O., Roller, P., Fales, H. M. & Das, B. C. Sulfatides of
Mycobacterium tuberculosis: the structure of the principal sulfatide (SL-I).
Biochemistry 15, 2728–2735 (1976).
27. Young, D. & Dye, C. The development and impact of tuberculosis vaccines.
Cell 124, 683–687 (2006).
28. Geerdink, D. et al. Total synthesis, stereochemical elucidation and biological
evaluation of Ac2SGL; a 1,3-methyl branched sulfoglycolipid from
Mycobacterium tuberculosis. Chem. Sci. 4, 709–716 (2013).
References
1. Damsté, J. S. S., Schouten, S., Hopmans, E. C., Duin, A. C. T. v. &
Geenevasen, J. A. J. Crenarchaeol the characteristic core glycerol dibiphytanyl
glycerol tetraether membrane lipid of cosmopolitan pelagic Crenarchaeota.
J. Lipid Res. 43, 1641–1651 (2002).
29. López, F., Minnaard, A. J. & Feringa, B. L. Catalytic enantioselective conjugate
addition with Grignard reagents. Acc. Chem. Res. 40, 179–188 (2007).
30. Bjorn, T. H., Feringa, B. L. & Minnaard, A. J. Catalytic asymmetric synthesis
of phthioceranic acid, a heptamethyl-branched acid from Mycobacterium
tuberculosis. Org. Lett. 9, 3013–3015 (2007).
2. Stymiest, J., Dutheuil, G., Mahmood, A. & Aggarwal, V. Lithiated carbamates:
chiral carbenoids for iterative homologation of boranes and boronic esters.
Angew. Chem. Int. Ed. 46, 7491–7494 (2007).
3. Stymiest, J. L., Bagutski, V., French, R. M. & Aggarwal, V. K. Enantiodivergent
conversion of chiral secondary alcohols into tertiary alcohols. Nature 456,
778–782 (2008).
4. Scott, H. K. & Aggarwal, V. K. Highly enantioselective synthesis of tertiary
boronic esters and their stereospecific conversion to other functional groups
and quaternary stereocentres. Chem. Eur. J. 17, 13124–13132 (2011).
5. Barluenga, J., Tomás-Gamasa, M., Aznar, F. & Valdés, C. Metal-free carbon–
carbon bond-forming reductive coupling between boronic acids and
tosylhydrazones. Nature Chem. 1, 494–499 (2009).
6. Myers, A. G. & Movassaghi, M. Highly efficient methodology for the
reductive coupling of aldehyde tosylhydrazones with alkyllithium reagents.
J. Am. Chem. Soc. 120, 8891–8892 (1998).
7. Shao, Z. & Zhang, H. N-Tosylhydrazones: versatile reagents for metal-catalyzed
and metal-free cross-coupling reactions. Chem. Soc. Rev. 41, 560–572 (2012).
8. Mundal, D. A., Avetta C. T. Jr & Thomson, R. J. Triflimide-catalysed sigmatropic
rearrangement of N-allylhydrazones as an example of a traceless bond
construction. Nature Chem. 2, 294–297 (2010).
9. Nave, S., Sonawane, R., Elford, T. & Aggarwal, V. Protodeboronation of
tertiary boronic esters: asymmetric synthesis of tertiary alkyl stereogenic centers.
J. Am. Chem. Soc. 132, 17096–17098 (2010).
31. Geerdink, D. & Minnaard, A. J. Total synthesis of sulfolipid-1. Chem. Commun.
50, 2286–2288 (2014).
32. Pischl, M. C., Weise, C. F., Müller, M-A., Pfaltz, A. & Schneider, C. A convergent
and stereoselective synthesis of the glycolipid components phthioceranic acid
and hydroxyphthioceranic acid. Angew. Chem. Int. Ed. 52, 8968–8972 (2013).
33. Wang, Y. F., Chen, C. S., Girdaukas, G. & Sih, C. J. Bifunctional chiral synthons
via biochemical methods. III. Optical purity enhancement in enzymic
asymmetric catalysis. J. Am. Chem. Soc. 106, 3695–3696 (1984).
34. Schmidt, Y. et al. Enantioselective total synthesis of the unnatural and the
natural stereoisomers of vittatalactone. J. Org. Chem. 75, 4424–4433 (2010).
35. Tsuji, K., Terao, Y. & Achiwa, K. Lipase-catalyzed asymmetric synthesis of
chiral 1,3-propanediols and its application to the preparation of optically pure
building block for renin inhibitors. Tetrahedron Lett. 30, 6189–6192 (1989).
36. Roesner, S. et al. Stereospecific conversion of alcohols into pinacol boronic
esters using lithiation–borylation methodology with pinacolborane. Chem.
Commun. 50, 4053–4055 (2014).
37. Dearden, M. J., Firkin, C. R., Hermet, J-P. R. & O’Brien, P. A readily-accessible
(+)-sparteine surrogate. J. Am. Chem. Soc. 124, 11870–11871 (2002).
38. Dixon, A. J., Mcgrath, M. J. & O’Brien, P. Synthesis of (+)-(1R,2S,9S)-11-methyl-
7,11-diazatricyclo[7.3.1.0]tridecane, a (+)-sparteine surrogate. Org. Synth.
83, 141–154 (2006).
10. Roesner, S. & Aggarwal, V. K. Enantioselective synthesis of (R)-tolterodine
using lithiation/borylation–protodeboronation methodology. Can. J. Chem.
90, 965–974 (2012).
39. Testa, M. L. et al. Oxidation of amino diols mediated by homogeneous and
heterogeneous TEMPO. Adv. Synth. Catal. 346, 655–660 (2004).
40. Inokuchi, T., Matsumoto, S., Nishiyama, T. & Torii, S. A selective and efficient
method for alcohol oxidations mediated by N-oxoammonium salts in
combination with sodium bromite. J. Org. Chem. 55, 462–466 (1990).
41. Zhao, M. M., Li, J., Mano, E., Song, Z. J. & Tschaen, D. M. Oxidation of primary
alcohols to carboxylic acids with sodium chlorite catalyzed by TEMPO and
bleach: 4-methoxyphenylacetic acid. Org. Synth. 81, 195–203 (2005).
11. Elford, T. G., Nave, S., Sonawane, R. P. & Aggarwal, V. K. Total synthesis of
(+)-erogorgiaene using lithiation–borylation methodology, and stereoselective
synthesisofeachofitsdiastereoisomers. J. Am. Chem. Soc.133, 16798–16801(2011).
12. Roesner, S., Casatejada, J. M., Elford, T. G., Sonawane, R. P. & Aggarwal, V. K.
Enantioselective syntheses of (+)-sertraline and (+)-indatraline using lithiation/
borylation–protodeboronation methodology. Org. Lett. 13, 5740–5743 (2011).
13. Pozzi, D., Scanlan, E. M. & Renaud, P. A mild radical procedure for the
reduction of B-alkylcatecholboranes to alkanes. J. Am. Chem. Soc 127,
14204–14205 (2005).
14. Villa, G., Povie, G. & Renaud, P. Radical chain reduction of alkylboron
compounds with catechols. J. Am. Chem. Soc. 133, 5913–5920 (2011).
15. Brown, H. C. & Murray, K. J. Organoboranes for synthesis. 1: Protonolysis of
trialkylboranes. A convenient non-catalytic conversion of alkenes into saturated
compounds via hydroboration–protonolysis. Tetrahedron 42, 5497–5504 (1986).
16. Hesse, M. J., Butts, C. P., Willis, C. L. & Aggarwal, V. K. Diastereodivergent
synthesis of trisubstituted alkenes through protodeboronation of allylic boronic
esters: application to the synthesis of the Californian red scale beetle pheromone.
Angew. Chem. Int. Ed. 51, 12444–12448 (2012).
17. Larouche-Gauthier, R., Elford, T. & Aggarwal, V. Ate complexes of secondary
boronic esters as chiral organometallic-type nucleophiles for asymmetric
synthesis. J. Am. Chem. Soc. 133, 16794–16797 (2011).
18. Sorin, G. et al. Oxidation of alkyl trifluoroborates: an opportunity for tin-free
radical chemistry. Angew. Chem. Int. Ed. 49, 8721–8723 (2010).
19. Liu, K. E., Johnson, C. C., Newcomb, M. & Lippard, S. J. Radical clock substrate
probes and kinetic isotope effect studies of the hydroxylation of hydrocarbons by
methane monooxygenase. J. Am. Chem. Soc. 115, 939–947 (1993).
20. World Health Organization. WHO Global Tuberculosis Report – Executive
Acknowledgements
We thank the Engineering and Physical Science Research Council (EP/I038071/1) and the
European Research Council (FP7/2007-2013, ERC grant no. 246785) for financial support.
R.R. thanks the Marie Curie Fellowship program (EC FP7, No 329578). We thank A. Scott
for technical assistance.
Author contributions
V.K.A. conceived the project and wrote the manuscript with R.R. R.R planned and carried
out the experiments. R.R. and V.K.A. discussed the experiments and results.
Additional information
Supplementary information and chemical compound information are available in the
online version of the paper. Reprints and permissions information is available online
to V.K.A.
Competing financial interests
The authors declare no competing financial interests.
814
© 2014 Macmillan Publishers Limited. All rights reserved.