Page 3 of 5
Pleaseꢀd oC ꢀhn e omt ꢀCa od mj u ms tꢀmarginsꢀ
JournalꢀNameꢀ
ꢀCOMMUNICATIONꢀ
ofꢀ theꢀ α-aminoꢀ acid,ꢀ dueꢀ toꢀ theꢀ characteristicꢀ upward-projectingꢀ NMRꢀspectraꢀofꢀ6aꢀandꢀ6bꢀareꢀshownꢀinꢀFigu Dr eO sI :ꢀ S1 50 ꢀ. (1 a0 )3ꢀ a9 /n Cd 9ꢀ (Cb C) .0ꢀ 8378B
directionꢀ ofꢀ theꢀ bridgeheadꢀ proton,ꢀ andꢀ thisꢀ proximityꢀ wouldꢀ
1
4
3
J H#-NH 3J H#-NH 3J H#-NH
at 0oC at 10oC
3J H#-NH 3J H#-NH 3J H#-NH
influenceꢀtheꢀmainꢀchainꢀrotationꢀofꢀtheꢀadjacentꢀα-aminoꢀacid. ꢀ
Tripeptides
o
at 25oC at 0oC at 10oC
at 25 C
NHBoc in CDCl3 in CDCl3in CD OH
NHBoc in CDCl3 in CDCl3in CD OH
3
3
H
H
O
(Hz)
(Hz)
(Hz)
O
(Hz)
(Hz)
(Hz)
Conformationalꢀ studyꢀ ofꢀ α-β-αꢀ tripeptidesꢀ Sinceꢀ β-strand-likeꢀ
extendedꢀconformationꢀisꢀstabilizedꢀonꢀbothꢀC-ꢀandꢀN-sidesꢀofꢀtheꢀ
Abhꢀaminoꢀacid,ꢀweꢀnextꢀsynthesizedꢀα-β-αꢀtripeptides,ꢀꢀBoc-Val-(R)-
Abh-Leu-OMeꢀ5aꢀandꢀBoc-Val-(S)-Abh-Leu-OMeꢀ5bꢀ(Figureꢀ4),ꢀandꢀ
Val 9.2
9.2
9.3
Val 9.5
9.4
8.6
N
N
O
O
*
S
*
R
O
O
HN
O
Leu
8.1
3
HN
O
Leu 8.0
7.9
7.2
8
.5
O
8.4
H
O
J H#-NH
o
H
O
at 25 C
in CDCl3
(Hz)
examinedꢀtheirꢀstructureꢀandꢀconformationalꢀrigidityꢀ(Figureꢀ4).ꢀInꢀ
NHBoc
H
5
a
5b
!-strand
3
O
5
a,ꢀ theꢀ Jꢀ couplingꢀ constantsꢀ ofꢀ theꢀ Valꢀ andꢀ Leuꢀ moietiesꢀ inꢀ d
1
-
!-strand
N
Leu 9.4
chloroformꢀareꢀ9.2ꢀHzꢀandꢀ8.4ꢀHzꢀ(atꢀ0°C)ꢀandꢀ9.2ꢀHzꢀandꢀ8.5ꢀHzꢀꢀ(atꢀ
*
S
o
o
2
5°C),ꢀ respectively.ꢀ Bothꢀ areꢀ largerꢀ thanꢀ 8ꢀ Hzꢀ atꢀ 0ꢀ Cꢀ andꢀ 25ꢀ C,ꢀ
O
HN
D-Leu 8.3
suggestingꢀthatꢀtheꢀValꢀandꢀLeuꢀmoietiesꢀadoptꢀβ-strandꢀstructures.ꢀ
O
H
3
Inꢀ5b,ꢀtheꢀ JꢀcouplingꢀconstantsꢀofꢀtheꢀValꢀandꢀLeuꢀmoietiesꢀinꢀd
1
-
O
5c !-strand
Tetrapeptides
chloroformꢀareꢀ9.4ꢀHzꢀandꢀ7.9ꢀHzꢀ(atꢀ0°C)ꢀandꢀ9.5ꢀHzꢀandꢀ8.0ꢀHzꢀꢀ(atꢀ
3
3
3
3
J H#-NH ∆ $/∆T
J H#-NH
J H#-NH ∆ $/∆T
J H#-NH
o
o
o
o
o
at 0 C
in CD3OH
(Hz)
at 0 C
2
5°C),ꢀrespectively,ꢀwhichꢀareꢀlargerꢀthanꢀorꢀcloseꢀtoꢀ8ꢀHzꢀatꢀ0ꢀ Cꢀ
at 25 C (ppb/ K)
in CDCl3 in CDCl3
at 25 C (ppb/ K)
o
NHBoc
O
H
N
NHBoc
in CDCl3 in CDCl3 in CD OH
3
andꢀ 25ꢀ C,ꢀ indicatingꢀ β-strand-likeꢀ extendedꢀ structuresꢀ ofꢀ bothꢀ
moieties.ꢀWeꢀalsoꢀmeasuredꢀtheꢀ H-NMRꢀspectraꢀofꢀ5aꢀandꢀ5bꢀinꢀaꢀ
polarꢀsolvent,ꢀd
(Hz)
O
(Hz)
(Hz)
1
Ala 1 8.4
-3.7
6.7
H
Ala 1 6.6
-2.7
-8.3
6.3
N
H
3
O
O
N/A
*
S
!-Ala N/A
3
-methanol.ꢀTheꢀ JꢀcouplingꢀconstantsꢀofꢀtheꢀValꢀandꢀ
O
NH
O
NH
Leuꢀmoietiesꢀinꢀ5aꢀareꢀ9.3ꢀHzꢀandꢀ8.1ꢀHzꢀ(atꢀ10°C)ꢀrespectively.ꢀTheyꢀ
Ala 2 7.4
Val 8.7
-11.7
-5.4
6.4
8.4
-6.7
6.2
8.3
O
Ala 2 6.5
O
O
H
HN
H
Val
areꢀstillꢀlargerꢀthanꢀ8ꢀHz,ꢀsupportingꢀaꢀgoodꢀβ-strand-formingꢀability.ꢀ
HN
9.1
-5.5
3
H
O
Inꢀ theꢀ caseꢀ ofꢀ 5b,ꢀ theꢀ Jꢀ couplingꢀ constantsꢀ ofꢀ theꢀ Valꢀ andꢀ Leuꢀ
H
O
O
6a !-strand
3
J H#-NH ∆ $/∆T
at 25 C (ppb/ K) at 10 C
in CDCl3 in CDCl3 in CD OH
3
Hz)
3
J H#-NH
o
6b Random coil
moietiesꢀ areꢀ 8.6ꢀ Hzꢀ andꢀ 7.2ꢀ Hzꢀ (atꢀ 10°C),ꢀ respectively,ꢀ suggestingꢀ
thatꢀ β-strand-likeꢀ extendedꢀ structure.ꢀ Forꢀ bothꢀ 5aꢀ andꢀ 5b,ꢀ theꢀ
solventꢀ dependencyꢀ wasꢀ weak.ꢀ Theseꢀ resultsꢀ suggestꢀ thatꢀ theꢀ
overallꢀconformationalꢀconstraintꢀinducedꢀbyꢀtheꢀAbhꢀaminoꢀacidꢀisꢀ
essentiallyꢀ independentꢀ ofꢀ theꢀ polarityꢀ ofꢀ theꢀ solvent.ꢀ Next,ꢀ weꢀ
o
Pentapeptide
NHBoc
(
(Hz)
H
Val 1
O
8
.6
-2.9
-4.3
8.7
HN
O
H
Ala 1
7.8
7.3
N
3
O
examinedꢀ5c,ꢀwhichꢀcontainsꢀbothꢀD-ꢀandꢀL-Leuꢀ(Figureꢀ4).ꢀTheirꢀ Jꢀ
R
O
*
couplingꢀ constantsꢀ areꢀ 9.4ꢀ andꢀ 8.3ꢀ Hz,ꢀ respectively,ꢀ suggestingꢀ β-
strandꢀconformation.ꢀThus,ꢀtheꢀAbhꢀaminoꢀacidꢀcanꢀalsoꢀstabilizeꢀβ-
strandꢀstructureꢀofꢀD-ꢀandꢀL-ꢀaminoꢀacid-containingꢀsequences.ꢀAllꢀ
theꢀchemicalꢀshiftsꢀofꢀα-protonsꢀofꢀtheꢀα-aminoꢀacidꢀresiduesꢀforꢀ1a,ꢀ
HN
Ala 2 7.7
-8.1
-5.0
7.0
8.9
H
O
NH
Val 2
8.8
H
O
O
7a
!
-strand
1
b,ꢀ1c,ꢀ3b,ꢀ4b,ꢀ5a,ꢀ5bꢀandꢀ5cꢀareꢀdownꢀfieldꢀshifted,ꢀasꢀcomparedꢀ
3
Figureꢀ4.ꢀ Jꢀcouplingꢀconstantꢀofꢀ5a,ꢀ5b,ꢀ5c,ꢀ6a,ꢀ6bꢀandꢀ7a.ꢀ
withꢀtheꢀrandomꢀcoil,ꢀindicatingꢀextendedꢀstructuresꢀ(seeꢀTableꢀS1).ꢀꢀꢀ
Conformationꢀ studyꢀ ofꢀ α-α-β-α-αꢀ pentapeptidesꢀ Theꢀ extendedꢀ
structureꢀofꢀα/βꢀpeptidesꢀcanꢀbeꢀreadilyꢀelongatedꢀtoꢀpentapeptideꢀ
Conformationꢀstudyꢀofꢀα-β-α-αꢀtripeptidestetrapeptidesꢀNext,ꢀtwoꢀ
tetrapeptideꢀ sequencesꢀ Boc-Ala-(S)-Abh-Ala-Val-OMeꢀ 6aꢀ andꢀ Boc-
Ala-β-Ala-Ala-Val-OMeꢀ6b,ꢀwereꢀsynthesizedꢀ(Figureꢀ4),ꢀtheꢀlatterꢀasꢀ
(
α-α-β-α-α).ꢀ (Figureꢀ 4)ꢀ Inꢀ pentapeptideꢀ 7aꢀ (Boc-Val1-Ala1-(R)-Abh-
3
Ala2-Val2-OMe),ꢀweꢀalsoꢀobserveꢀlargeꢀ Jꢀcouplingꢀconstantsꢀforꢀα-
3
aꢀreferenceꢀcompound.ꢀInꢀ6a,ꢀtheꢀ Jꢀcouplingꢀconstantsꢀofꢀα-aminoꢀ
aminoꢀacidꢀresiduesꢀVal1,ꢀAla1,ꢀAla2ꢀandꢀVal2,ꢀwhichꢀisꢀ8.6,ꢀ7.8,ꢀ7.7ꢀ
acidꢀresiduesꢀinꢀCDCl
suggestingꢀaꢀβ-strand-likeꢀextendedꢀconformation.ꢀHowever,ꢀtheꢀ Jꢀ
couplingꢀ constantꢀ valuesꢀ ofꢀ theꢀ α-aminoꢀ acidꢀ residuesꢀ inꢀ CD OHꢀ
becomeꢀsmallerꢀ(6.7,ꢀ6.4ꢀandꢀ8.4ꢀHz),ꢀindicatingꢀsomeꢀsolventꢀeffect.ꢀ
3
ꢀatꢀ25ꢀ°Cꢀareꢀ8.4,ꢀ7.4ꢀandꢀ8.7ꢀHz,ꢀ(Figureꢀ4),ꢀ
o
andꢀ8.8ꢀHzꢀrespectively,ꢀatꢀ60ꢀ Cꢀinꢀchloroformꢀ(seriousꢀoverlappingꢀ
3
o
o
ofꢀNHsꢀisꢀdetectedꢀatꢀ25ꢀ C)ꢀandꢀ8.7,ꢀ7.3,ꢀ7.0ꢀandꢀ8.9ꢀHzꢀatꢀ10ꢀ Cꢀinꢀ
methanol,ꢀ suggestingꢀ aꢀ β-strand-likeꢀ extendedꢀ structureꢀ andꢀ littleꢀ
solventꢀeffect.ꢀTheꢀtemperatureꢀcoefficientꢀvaluesꢀforꢀα-aminoꢀacidꢀ
residuesꢀVal1,ꢀAla1,ꢀAla2ꢀandꢀVal2,ꢀwhichꢀisꢀ-2.9ꢀppb/K,ꢀ-4.3ꢀppb/K,ꢀ-
3
5
3
Accordingꢀtoꢀaꢀpreviousꢀreportꢀ ,ꢀ Jꢀcouplingꢀconstantꢀvaluesꢀforꢀanꢀ
unstructuredꢀrandomꢀcoilꢀrangeꢀfromꢀ5.8ꢀtoꢀ7.3ꢀHz.ꢀInꢀ6b,ꢀbasedꢀonꢀ
8
.1ꢀppb/Kꢀandꢀ-5.0ꢀppb/Kꢀrespectively,ꢀmayꢀindicateꢀweakꢀhydrogenꢀ
3
theꢀ Jꢀ couplingꢀ constantꢀ valuesꢀ ofꢀ theꢀ α-aminoꢀ acidꢀ residuesꢀ inꢀ
bondingꢀformingꢀability,ꢀparticularlyꢀofꢀVal1.ꢀInꢀtheꢀVT-NMRꢀofꢀ7aꢀ
o
CDCl
3
ꢀatꢀ25ꢀ Cꢀ(6.6,ꢀ6.5ꢀandꢀ9.1ꢀHz,ꢀFigureꢀ4),ꢀtetrapeptideꢀ6bꢀmayꢀ
3
(
Figureꢀ 5ꢀ (a)),ꢀ theꢀ temperature-dependentꢀ changeꢀ ofꢀ Jꢀ couplingꢀ
takeꢀ aꢀ randomꢀ coilꢀ structure.ꢀ Theꢀ chemicalꢀ shiftꢀ ofꢀ amideꢀ NHꢀ
protonsꢀgenerallyꢀdisplaysꢀaꢀtemperatureꢀdependenceꢀthatꢀcanꢀbeꢀ
usedꢀ toꢀ getꢀ informationꢀ onꢀ theꢀ presenceꢀ andꢀ theꢀ stabilityꢀ ofꢀ
constantsꢀ ofꢀ theꢀ α-aminoꢀ acidꢀ residuesꢀ isꢀ smallꢀ overꢀ aꢀ 15-degreeꢀ
temperatureꢀrange,ꢀexceptꢀAla1.ꢀTheꢀconcentrationꢀofꢀ6a,ꢀ6bꢀandꢀ7aꢀ
inꢀ thisꢀ temperature-dependencyꢀ experimentꢀ wasꢀ aroundꢀ 60ꢀ mM,ꢀ
whichꢀwouldꢀbeꢀsufficientlyꢀhighꢀtoꢀdetectꢀintermolecularꢀhydrogenꢀ
bondꢀ formation,ꢀ ifꢀ itꢀ occurred.ꢀ Weꢀ alsoꢀ carriedꢀ outꢀ ROESYꢀ
measurement,ꢀ becauseꢀ inꢀ anꢀ antiparallel-sheetꢀ structure,ꢀ
interstrandꢀ NOE/ROEꢀ effectsꢀ areꢀ generallyꢀ observedꢀ betweenꢀ theꢀ
sideꢀchainsꢀandꢀbetweenꢀtheꢀamideꢀhydrogenꢀatomsꢀofꢀtheꢀpairingꢀ
1
5
hydrogenꢀbonds.ꢀInꢀnon-polarꢀsolventsꢀsuchꢀasꢀchloroform, ꢀifꢀtheꢀ
coefficientꢀ ofꢀ theꢀ temperatureꢀ dependenceꢀ ofꢀ theꢀ chemicalꢀ shiftꢀꢀ
changeꢀofꢀtheꢀamideꢀNHꢀprotonsꢀliesꢀbetweenꢀ0ꢀandꢀ-3ꢀppb/K,ꢀthisꢀisꢀ
suggestiveꢀ ofꢀ theꢀ presenceꢀ ofꢀ aꢀ strongꢀ intramolecularꢀ hydrogenꢀ
bond.ꢀ Temperatureꢀ coefficientsꢀ betweenꢀ -5ꢀ andꢀ -3ꢀ ppb/Kꢀ areꢀ
indicativeꢀ ofꢀ aꢀ weakꢀ intramolecularꢀ hydrogenꢀ bond.ꢀ Temperatureꢀ
coefficientsꢀsmallerꢀthanꢀ-5ꢀppb/Kꢀimplyꢀtheꢀlackꢀofꢀanyꢀintra-ꢀ(orꢀ
inter-)ꢀmolecularꢀhydrogenꢀbond.ꢀInꢀtheꢀcaseꢀofꢀ6a,ꢀtheꢀtemperatureꢀ
coefficientꢀvaluesꢀforꢀAla2ꢀandꢀValꢀareꢀ-11.7ꢀandꢀ-5.4ꢀppb/Kꢀ(Figureꢀ
5
residues ,ꢀ butꢀ weꢀ couldꢀ notꢀ detectꢀ anyꢀ suchꢀ correlation.ꢀ Theꢀ
concentrationꢀ dependencyꢀ ofꢀ circularꢀ dichroismꢀ (CD)ꢀ (Figureꢀ 5(b))ꢀ
representsꢀ additionalꢀ evidenceꢀ forꢀ theꢀ absenceꢀ ofꢀ intermolecularꢀ
hydrogenꢀ bondingꢀ andꢀ aggregation.ꢀ Theꢀ CDꢀ spectrumꢀ forꢀ 7aꢀ inꢀ
methanolꢀshowsꢀoneꢀbandꢀofꢀpositiveꢀellipticityꢀatꢀ202ꢀnmꢀandꢀoneꢀ
minimaꢀofꢀnegativeꢀellipticityꢀatꢀ224ꢀnm,ꢀwhichꢀcorrespondsꢀtoꢀβ-
4
),ꢀexcludingꢀtheꢀpossibilityꢀthatꢀaꢀstableꢀhydrogenꢀbondꢀisꢀformed.ꢀ
Theꢀ temperatureꢀ coefficientꢀ valueꢀ forꢀ Ala1ꢀ ofꢀ 6aꢀ isꢀ -3.7,ꢀ whichꢀ isꢀ
Thisꢀjournalꢀisꢀ©ꢀTheꢀRoyalꢀSocietyꢀofꢀChemistryꢀ20xxꢀ
J.ꢀName.,ꢀ2013,ꢀ00,ꢀ1-3ꢀ|ꢀ3ꢀ
Pleaseꢀdoꢀnotꢀadjustꢀmarginsꢀ